
CS 111: Operating System Principles
Lab 1
Pipe Up 1.0.1

Jon Eyolfson
April 12, 2021
Due: April 23, 2021 at 8 PM PST

In this lab you’ll be writing the low level code performed by the pipe (|) operator in shells. Users will pass in executable
names as command line arguments and you will execute each one in a new process (again similar to a shell). You’re expected
to understand your own implementation and test it yourself. Lecture 5 and 6 cover the function calls you should need (except
as noted below).

Additional APIs. Given you are just using the executable names, you may use the C library helper functions for execve, such
as execlp. execlpwill let you skip using string arrays (using C varargs), and it will also search for executables using the PATH
environment variable. You may notice your program hanging waiting for input. You must call close on any file descriptors not
explictly used in your process. Failure to call close will inform the operating system you are not done with it, and it will never
return end-of-file from a read system call.

Starting the lab. You’ll receieve all future labs through my repository (Lab 0 had you set it up asupstream). Run the following
command to get the skeleton for Lab 1: git pull upstream main. You should be able to run make in the lab-01 directory
to create a pipe executable, and then make clean to remove all binary files.

Files to modify. You should only be modifying pipe.c and README.md in the lab-01 directory.

Your task. You should execute the programs in argv[1], ..., argv[argc - 1] as new processes. You also need to create
a pipe between two subsequent processes. For example, a pipe should connect argv[1]’s standard output to argv[2]’s
standard input (if there are at least two procsses). The standard input of first new process must be the same as the standard
input of the parent process (pipe). Also, the standard output of your last new process must be the same as the standard
output of the parent process. You should be able to handle between 1 to at least 8 programs (more is okay). All standard errors
should be the same as the parent’s standard error. You do not need to handle passing additional command line arguments to
every individual new process. Finally, fill in your README.md so that you could use your program without having to use this
document.

Errors. Your program should (of course) handle errors from all function calls you make. Your program should exit with the
proper errno of the failing call. It is okay to exit as soon as you find an error, without any error recovery. If there are no
programs as command line arguments, your program should exit with errno EINVAL (invalid argument). Your program should
work with a single program as a command line argument. Your program should not create any orphan processes (you must
wait).

Tips. You should come up with smaller subtasks yourself. One approach may be to execute one program from the command
line, then multiple programs independently. Afterwards set up your pipe between two processes, then multiple processes. Start
small then work big.

Example output. Your output should be the same as if you were to use | between each program in your shell.

> ./pipe ls
Makefile pipe pipe.c pipe.o README.md
> ./pipe ls cat wc

5 5 38

The last command should have the same output of: ls | cat | wc.

1

Submission. Simply push your code using git push origin main (or simply git push). For late days will we look at
the timestamp on our server. We will never use your commit times as proof of submission, only when you push your code to
the course Git server.

2

