
CS 111: Operating System Principles
Lab 0
A Kernel Seedling 1.0.5

Jon Eyolfson
March 29, 2021
Due: April 9, 2021

In this lab, you’ll setup a virtual machine and write your (probably) first kernel module. We’ll use VirtualBox as our hypervisor
since it supports many different host operating systems, and is friendly to learn. You’ll be using Git to submit your work and
save your progress. Finally, you’ll write a kernel module that adds a file to /proc/ to expose internal kernel information.

Virtual machine setup. After the setup you’ll have a fully functioning Linux virtual machine. You’ll also want to have a shared
folder accessible on both the host and guest operating system to share files. You’re free to edit your files with whatever you’re
comfortable with in whichever operating system you wish. You should only run your code on the virtual machine though.

1. Download and Install VirtualBox: https://www.virtualbox.org/wiki/Downloads
2. Download our virtual machine: https://laforge.cs.ucla.edu/cs111/media/cs111/vm.ova
3. Import the virtual machine

(a) File → Import Appliance
(b) Choose vm.ova from your local file system
(c) Next → Import

4. Create a folder called Shared somewhere on your machine
5. Add the Shared folder to the virtual machine

(a) Right click CS 111 from the left panel and hit settings
(b) Click on Shared Folders on the left panel
(c) Right click in the right panel and select Add Shared Folder
(d) For Folder Path select Other... and select your Shared folder on your machine
(e) Leave the Folder Name as Shared
(f) Check Auto-mount
(g) Press OK
(h) Press OK

6. Select CS 111 from the left panel and click Start at the top of the right panel
7. Use cs111 for both the username and password
8. (Optional) Go to View → Virtual Screen 1 and resize to any resolution you’d like

Git setup. Run all these commands in your home directory (or anywhere really) on your virtual machine. First, open a terminal
by going to Activities and selecting the Terminal icon on the left. Your Shared directory is mounted at /media/sf_Shared. If
you’re unfamiliar with Git, please check out the Pro Git book. For any of the commands, run them in the terminal.

1. Run: git config --global user.name "Your Full Name"
2. Run: git config --global user.email your@email.com
3. Run: ssh-keygen -o

(a) Press Enter for the default location
(b) Press Enter for no passphrase
(c) Press Enter again to confirm

4. Login to the course website
(a) (Optional) Go to Activities and click the Firefox icon on the left

5. Click your username in the top right
6. Click New SSH Key (Text Input)
7. Add your SSH key

(a) Run: cat ~/.ssh/id_rsa.pub
(b) Copy and paste the contents into the text box
(c) (Optional) Give the key a comment (it’ll be its name)
(d) Press submit

1

https://www.virtualbox.org/wiki/Downloads
https://laforge.cs.ucla.edu/cs111/media/cs111/vm.ova
https://git-scm.com/book/en/v2/


8. Run: cd ~
9. Run: git clone git@laforge.cs.ucla.edu:spring21/username/cs111

(replace username with your username)
10. Run: cd cs111
11. Run: git remote add upstream git@laforge.cs.ucla.edu:spring21/jon/cs111

Lab Setup. Ensure you’re in the repository (cd ~/cs111) directory. Make sure you have the latest skeleton code from us
by running: git pull upstream main. You can finally run: cd lab-00 to begin the lab.

Your task. You’re going to create a/proc/countfile that shows the current number of running processes (or tasks) running.
The process table runs within kernel mode, so to access it you’ll need to write a kernel module that runs in kernel mode. For
your submission you’ll modify proc_count.c, and only this file, for the coding part. In the lab-00 directory we should be
able to run the following commands:

make
sudo insmod proc_count.ko
cat /proc/count

The last command should report a single integer representing the number of processes (or tasks) running on the machine. Your
final task is to fill in your documentation in the README.md for lab-00.

Tips. The kernel code is well commented, you can use https://elixir.bootlin.com/ for looking up functions and
macros (symbols). There’s already a skeleton that uses: MODULE_AUTHOR, MODULE_DESCRIPTION, MODULE_LICENSE,
module_init, module_exit, and pr_info. You’ll probably want to use the following to complete this lab:

proc_create_single
proc_remove
for_each_process
seq_printf

You can divide this task into small subtasks:
1. Properly create and remove /proc/count when your module loads and unloads, respectively

2. Make /proc/count return some string when you cat /proc/count
3. Make /proc/count return a integer with the number of running processes (or tasks) when you cat /proc/count

Commands. You’ll have to use the following commands for this lab:
Build your module with make
Insert your module into the kernel with sudo insmod proc_count.ko
Read any information messages printed in the kernel with sudo dmesg -l info
Remove your module from the kernel (so you can insert a new one) with sudo rmmod proc_count
Sanity check your module information with modinfo proc_count.ko

Grading. The breakdown is as follows:
75% code implementation in proc_count.c
25% documentation in README.md

Submission. Simply push your code using git push origin main (or simply git push). For late days will we look at
the timestamp on our server. We will never use your commit times as proof of submission, only when you push your code to
the course Git server.

2

https://elixir.bootlin.com/

