Why C Programming?

2024 Winter APS 105: Computer Fundamentals Jon Eyolfson

I'm Jon, Your Instructor

Eyolfson

I'm Jon, Your Instructor

Eyolfson

I'm Jon, Your Instructor

Elf

I'm Jon, Your Instructor

Elf son

I'm Jon, Your Instructor

E Ifson

I'm Jon, Your Instructor

Eyolfson

There's 4 Course Entries in Your Timetable

```
Lectures
Where we learn concepts
```


Plenary Lectures

Additional practice for labs

Labs

In-person lab help from TAs

Start the Labs Early!

2 weeks before deadline

Handout available
Material covered
Deadline

Saturday at 11:59 PM

Academic Integrity is Serious

You may discuss course content, you do not copy it!
You're primarily harming your own learning
It's much easier to detect copying software

The Majority of Your Grade is Exams

There are 9 Labs, Progressively Weighted More

Officially, We Use Quercus and an Online Textbook

Direct Quercus link: https://q.utoronto.ca/courses/330896
Online Textbook: https://learningc.org/ (no other materials required)
Piazza: https://piazza.com/utoronto.ca/winter2024/aps105/home

Additional Resources for Section 3

Lecture livestreams and recordings: https://youtube.com/@eyolfson
Lecture slides (and YouTube links): https://eyolfson.com/courses/aps105/
Discord community: https://compeng.gg/discord/join/aps105/

In This Course, You Tell Your Computer What to Do

Computers execute (or run) a program
The art of writing a program is programming

Why C Programming, Specifically?

Humans write programs in a programming language
C is a programming language, first appearing in the 1970s
C is a small language, with few features, it's closer to how a computer works

What is a Computer?

Hardware is the physical components of a computer

We Model a Computer as a Black Box

What's the Other Part of a Computer?

Software is the information the computer needs to run
The most important information is instructions that tell the CPU what to do

How Do Computers Store Information?

Computers use numbers and humans assign meaning to them
At the most basic level, they can only store 0 or 1

We Usually Represent Numbers in Decimal

We represent numbers as a sequence of digits
Digits are numbers between 0-9 (10 options)
Computers represent numbers as a sequence of bits
A bit (binary digit) is either 0 or 1 (2 options)
Binary is a numeral system that only uses bits

Let's Represent the Decimal 176

$100 \quad 10 \quad 1$
176

Let's Represent the Decimal 176

$$
\begin{array}{ccc}
10^{\mathbf{2}} & \mathbf{1 0}^{1} & 10^{0} \\
1 & 7 & 6
\end{array}
$$

Let's Represent the Decimal 176

$$
\begin{array}{llllllll}
2^{7} & 2^{6} & 2^{6} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}
\end{array}
$$

Let's Represent the Decimal 176

$\begin{array}{llllllll}128 & 64 & 32 & 16 & 8 & 4 & 2 & 1\end{array}$

Let's Represent the Decimal 176

$\begin{array}{llllllll}128 & 64 & 32 & 16 & 8 & 4 & 2 & 1\end{array}$
$\begin{array}{llllllll}1 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}$

Let's Represent the Decimal 176

128	$\mathbf{6 4}$	$\mathbf{3 2}$	$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$
1	0	1	1	0	0	0	0
Verify, $128+32+16=176$							

Computers Store Information in a Finite Amount

A byte is a binary number that's 8 bits long
It can represent $256\left(2^{8}\right)$ different things
In math we'd say $(5)_{10}=(101)_{2}$, in most programming languages 5 is the same as 0b101
$0 b$ is a prefix that says the number that follows is in binary
Note, there are implicit leading zeros so
0b0000101 is the same as 0b101

We Can Represent Letters and Numbers in Binary

We don't need a full byte, assume the most significant bit is always 0 We have 128 different representations $\left(2^{7}\right)$

A character is how a computer represents English such as: letters, digits, punctuation, and spaces

For instance, " A " is represented as 0b01000001 or 65

Your Program (or Applications) Run in an Operating System

The operating system (OS) is software that interacts directly with hardware (You'll learn much more about this in ECE 344)

Code is text written in a programming language
Source code is code for particular software
A library is code written by someone else that you can use
C provides a library called: the standard C library (libc)

We Need to Use a Program to Create Programs

A compiler transforms your source code into a program your OS can run

Machine code is the binary representation of instructions the CPU can run
We often use compile as a verb: "Let's compile our program."

We Need Another Program to Handle Input and Output for Us

A terminal uses a keyboard for input and a monitor for output
It is a text interface (it uses characters you see on your keyboard)
For this course, all the programs we create use a text interface

Your First Program

```
#include <stdio.h>
int main(void) {
    printf("Hello world\n");
    return 0;
}
```

\#include reads the contents of another file, stdio.h contains the declaration of printf

Your First Program

```
#include <stdio.h>
int main(void) {
    printf("Hello world\n");
    return 0;
}
```

\#include reads the contents of another file, stdio.h contains the declaration of printf

Your First Program

```
#include <stdio.h> defines a function called main that outputs a
    number (OS starts executing main always)
int main(void) {
    printf("Hello world\n");
    return 0;
}
```

\#include reads the contents of another file, stdio.h contains the declaration of printf

Your First Program

\#include reads the contents of another file, stdio.h contains the declaration of printf

Your First Program

