
Pointers

2024 Winter APS 105 Computer Fundamentals
Jon Eyolfson

Lecture 12
1.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Recall: Computers Just StoreNumbers

Assuming we have a 64 bit 8 byte) binary number,
we can represent it as a whole number using:

263 262 261 260 … 22 21 20

0 0 0 0 … 1 0 1

What decimal number would this be?

1

BinaryNumbers are Too Long toWrite Out and Read

Decimal numbers are for humans, but computers are based on powers of 2

Writing numbers using base 16 instead of 2 or 10 is more convenient

Decimal uses digits: 0 - 9
Binary uses bits: 0 - 1
Base 16 uses: 0 - 9, and 6 other characters

2

WeCall the Base 16Number SystemHexadecimal

We borrow letters to represent the values: 10 through 15
10 is a
11 is b
12 is c
13 is d
14 is e
15 is f

We could call a hexadecimal digit 09 and a-f) a hexit (but no one does)

In C, a hex (short for hexadecimal number), starts with 0x
Not testable, but will help you understand computers

3

WeCall the Base 16Number SystemHexadecimal

We borrow letters to represent the values: 10 through 15
10 is a
11 is b
12 is c
13 is d
14 is e
15 is f

We could call a hexadecimal digit 09 and a-f) a hexit (but no one does)

In C, a hex (short for hexadecimal number), starts with 0x
Not testable, but will help you understand computers

3

The SameRulesApply, Justwith aNewBase

This turns out to be convenient because each hex digit represents 4 bits
This works well with bytes: 2 hex digits represents 8 bits (or 1 byte)

1615 1614 1613 1612 … 162 161 160

0 0 0 0 … 0 f 4

What decimal number would this be?

(15× 16) + (4× 1) = 244

4

The SameRulesApply, Justwith aNewBase

This turns out to be convenient because each hex digit represents 4 bits
This works well with bytes: 2 hex digits represents 8 bits (or 1 byte)

1615 1614 1613 1612 … 162 161 160

0 0 0 0 … 0 f 4

What decimal number would this be? (15× 16) + (4× 1) = 244

4

AnAddressContains a Byte Value in Blue, Address Below)

Recall from Lecture 2

57
512 000

5
512 001

0
512 002

0
512 003

254
512 004

202
512 005

0
512 006

0
512 007

5

WeWriteMemoryAddresses in Hex

This is equivalent to the previous slide)

57
0x7d000

5
0x7d001

0
0x7d002

0
0x7d003

254
0x7d004

202
0x7d005

0
0x7d006

0
0x7d007

6

CStores theValue of int xSomewhere inMemory

57
0x7d000

5
0x7d001

0
0x7d002

0
0x7d003

0x7d004 0x7d005 0x7d006 0x7d007
Value of x

7

APointer is the StartingAddress of aValue inMemory

The & operator is the address of, its result is the pointer to the value
For values that take up multiple bytes, it’s always the lowest address

In the previous example, &x would be 0x7d004

8

PointersAre aNewType

Assume we have:
int x = 1;

We can’t do:
int z = &x;

The type of &x is int *
It’s a pointer to an integer value

9

Each TimeWeTake theAddress of aVariable,
WeAdd * to its Type
Assume we have:

int x = 1;
We can do:
int *z = &x;

The type of &z is int **
It’s a pointer to a pointer to an integer value

10

Each TimeWeTake theAddress of aVariable,
WeAdd * to its Type
Assume we have:

int x = 1;
We can do:
int *z = &x;

The type of &z is int **
It’s a pointer to a pointer to an integer value

10

YouCanOnly Take theAddress of aVariable

A variable stores a value in memory
(a value by itself may never be in memory)

If you try to do something like: &4
You may get a very unhelpful message

error: cannot take the address of an rvalue of type 'int'

11

YouCanOnly Take theAddress of aVariable

A variable stores a value in memory
(a value by itself may never be in memory)

If you try to do something like: &4
You may get a very unhelpful message

error: cannot take the address of an rvalue of type 'int'

11

WeCanUse the *Operator toAccess theValue at anAddress
Assume we have:

int x = 1;
int *z = &x;

We can do:
int y = *z;

After that statement, y = 1

Accessing a value through a pointer is called dereferencing
In the code above we’d say we dereference z

12

EachUse of the *Operator Removes a * from the Result Type

If we have the variable:
int **z;

The type of *z is int *

13

WeCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

int main(void) {
int x = 1;
int y = 2;
int *z = &x;
*z = 3;
return 0;

}

14

WeCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

int main(void) {
int x = 1;
int y = 2;
int *z = &x;
*z = 3;
return 0;

}

14

WeCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

int main(void) {
int x = 1;
int y = 2;
int *z = &x;
*z = 3;
return 0;

}

14

WeCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

int main(void) {
int x = 1;
int y = 2;
int *z = &x;
*z = 3;
return 0;

}

14

WeCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

int main(void) {
int x = 1;
int y = 2;
int *z = &x;
*z = 3;
return 0;

}

14

FunctionsCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

p: addresssetThree

void setThree(int *p) {
*p = 3;

}

int main(void) {
int x = 1;
int y = 2;
int *z = &x;
setThree(z);
return 0;

}

15

FunctionsCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

p: addresssetThree

void setThree(int *p) {
*p = 3;

}

int main(void) {
int x = 1;
int y = 2;
int *z = &x;
setThree(z);
return 0;

}

15

FunctionsCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

p: addresssetThree

void setThree(int *p) {
*p = 3;

}

int main(void) {
int x = 1;
int y = 2;
int *z = &x;
setThree(z);
return 0;

}

15

FunctionsCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

p: addresssetThree

void setThree(int *p) {
*p = 3;

}

int main(void) {
int x = 1;
int y = 2;
int *z = &x;
setThree(z);
return 0;

}

15

FunctionsCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

p: addresssetThree

void setThree(int *p) {
*p = 3;

}

int main(void) {
int x = 1;
int y = 2;
int *z = &x;
setThree(z);
return 0;

}

15

FunctionsCanChangeValues of Variables Through Pointers

x: 1x: 3

y: 2

z: address

main

p: addresssetThree

void setThree(int *p) {
*p = 3;

}

int main(void) {
int x = 1;
int y = 2;
int *z = &x;
setThree(z);
return 0;

}

15

WeCanPrint theAddress of a Pointer

The format specifier for pointers is: %p
It expects a type of void *

A void * is basically C saying the type is a generic pointer
We don’t need to know the type of the value it’s pointing to

You cannot dereference a void *
We’re allowed to cast a pointer to any type to a void *

16

WeCanAddPrint Statements toVerify

#include <stdio.h>

void setThree(int *p) {
printf("p [address is %p] = %p\n", (void *) &p, (void *) p);
printf(" *p = %d\n", *p);
*p = 3;

}

int main(void) {
int x = 1; int y = 2; int *z = &x;
printf("x [address is %p] = %d\n", (void *) &x, x);
printf("y [address is %p] = %d\n", (void *) &y, y);
setThree(z);
setThree(&y);
printf("x [address is %p] = %d\n", (void *) &x, x);
printf("y [address is %p] = %d\n", (void *) &y, y);
return 0;

}
17

YourMemoryAddressesWill Very Likely be Different

The result of running the program (for me) is:
x [address is 0xffffd2c47f38] = 1
y [address is 0xffffd2c47f34] = 2
p [address is 0xffffd2c47ee8] = 0xffffd2c47f38
*p = 1
p [address is 0xffffd2c47ee8] = 0xffffd2c47f34
*p = 2
x [address is 0xffffd2c47f38] = 3
y [address is 0xffffd2c47f34] = 3

Note, the address of p may change between function calls

18

Now,WeShould Understand the Swap Function

#include <stdio.h>
#include <stdlib.h>

void swap(int* a, int* b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(void) {
int a = 1;
int b = 2;
printf("main (before swap) a: %d, b: %d\n", a, b);
swap(&a, &b);
printf("main (after swap) a: %d, b: %d\n", a, b);
return EXIT_SUCCESS;

}
19

