Pointers

2024 Winter APS 105: Computer Fundamentals Lecture 12
Jon Eyolfson 1.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Recall: Computers Just Store Numbers

Assuming we have a 64 bit (8 byte) binary number,
we can represent it as a whole number using:
263 262 261 260 . 22 21 20
0 0 0 0 1 0 1

What decimal number would this be?

Binary Numbers are Too Long to Write Out and Read

Decimal numbers are for humans, but computers are based on powers of 2
Writing numbers using base 16 instead of 2 or 10 is more convenient
Decimal uses digits: 0 -9

Binary uses bits: 0 -1
Base 16 uses: 0 - 9, and 6 other characters

We Call the Base 16 Number System Hexadecimal

We borrow letters to represent the values: 10 through 15
T0isa
Misb
12isc
13isd
14ise
15is f

We could call a hexadecimal digit (0-9 and a-f) a hexit (but no one does)

We Call the Base 16 Number System Hexadecimal

We borrow letters to represent the values: 10 through 15
T0isa
Misb
12isc
13isd
14ise
15is f

We could call a hexadecimal digit (0-9 and a-f) a hexit (but no one does)

In C, a hex (short for hexadecimal number), starts with 8x

The Same Rules Apply, Just with a New Base

This turns out to be convenient because each hex digit represents 4 bits
This works well with bytes: 2 hex digits represents 8 bits (or 1 byte)
16" 16 16" 162 ... 162 16" 16°
0 0 0 0 0 f 4

What decimal number would this be?

The Same Rules Apply, Just with a New Base

This turns out to be convenient because each hex digit represents 4 bits
This works well with bytes: 2 hex digits represents 8 bits (or 1 byte)

16" 16 16™ 16 .. 162 16" 16°
0 0 0 0 0 f 4
What decimal number would this be? (15 x 16) + (4 x 1) = 244

An Address Contains a Byte (Value in Blue, Address Below)

(Recall from Lecture 2)

512 000 512 001 512 002 512 003

512 004 512 005 512 006 512 007

We Write Memory Addresses in Hex

(This is equivalent to the previous slide)

8x7d0ee 0x7dee1 8x7dee2 8x7dee3

0x7d0e64 Bx7d0e65 8x7d6e6 8x7dee7

C Stores the Value of int x Somewhere in Memory

Bx7deee Bx7dee1 8x7dee2 8x7d0e3

Bx7d0e04 Bx7d0e5 8x7dees 8x7dea7

A Pointer is the Starting Address of a Value in Memory

The & operator is the address of, its result is the pointer to the value
For values that take up multiple bytes, it's always the lowest address

In the previous example, & would be 0x7d804

Pointers Are a New Type

Assume we have:

int x = 1;
We can't do:
int z = &x;

The type of & is int *
It's a pointer to an integer value

Each Time We Take the Address of a Variable,
We Add * to its Type

Assume we have:
int x = 1;

We can do:
int *z = &x;

18

Each Time We Take the Address of a Variable,
We Add * to its Type

Assume we have:
int x = 1;

We can do:
int *z = &x;

The type of &z is int **
It's a pointer to a pointer to an integer value

18

You Can Only Take the Address of a Variable

A variable stores a value in memory
(a value by itself may never be in memory)

I

You Can Only Take the Address of a Variable

A variable stores a value in memory
(a value by itself may never be in memory)

If you try to do something like: &4
You may get a very unhelpful message

error: cannot take the address of an rvalue of type 'int'

[

We Can Use the * Operator to Access the Value at an Address

Assume we have:
int x = 1;
int *z = &x;

We can do:
int y = *z;

After that statement, y = 1

Accessing a value through a pointer is called dereferencing
In the code above we'd say we dereference z

12

Each Use of the * Operator Removes a * from the Result Type

If we have the variable:
int **z;

The type of *zis int *

13

We Can Change Values of Variables Through Pointers

int (void) §
int x = 1;
int y = 2;
int *z = &x;
*z = 3;
return 8;

14

We Can Change Values of Variables Through Pointers

int (void) §
int x = 1;
int y = 2;
int *z = &x;
*z = 3;
return 8;

14

We Can Change Values of Variables Through Pointers

int (void) §
int x = 1;
int y = 2;
int *z = &x;
*z = 3;
return 8;

14

We Can Change Values of Variables Through Pointers

int (void) §

int x = 1;
int y = 2;
int *z = &x; z: address
*z = 3;
return 0; y: 2
}
x: 1

14

We Can Change Values of Variables Through Pointers

int (void) §

int x = 1;
int y = 2;
int *z = &x; z: address
*z = 3;
return 0; y: 2
}
x: 3

14

Functions Can Change Values of Variables Through Pointers

void (int *p) {
=3

}

int (void) §
int x = 1;
inty = 2;
int *z = &x;
setThree(z);
return @;

}

15

Functions Can Change Values of Variables Through Pointers

void (int *p) {
=3
}
int (void) §
int x = 1;
inty = 2;
int *z = &x;
setThree(z);
} return @; o

15

Functions Can Change Values of Variables Through Pointers

void (int *p) {
*p = 3;
}
int (void) §
int x = 1;
inty = 2;
int *z = &x;
’ : 2
setThree(z); y
return @; X 1
} :

15

Functions Can Change Values of Variables Through Pointers

void (int *p) {
=3
}
int (void) §
int x =15 z: address
inty = 2;
int *z = &x;
’ 1 2
setThree(z); y
return @; X 1
} :

15

Functions Can Change Values of Variables Through Pointers

void setThree(int *p) {
_>*p=3;

}

int main(void) {
int x = 1;
int y = 2;
int *z = 8&x;
setThree(z);
return 0;

setThree _

15

Functions Can Change Values of Variables Through Pointers

void (int *p) {
=3
}
int (void) §
int x =15 z: address
inty = 2;
int *z = &x;
’ 1 2
setThree(z); y
return @; _
} :

15

We Can Print the Address of a Pointer

The format specifier for pointers is: %p
It expects a type of void *

A void *is basically C saying the type is a generic pointer
We don't need to know the type of the value it's pointing to

You cannot dereference a void *
We're allowed to cast a pointer to any type to a void *

16

We Can Add Print Statements to Verify

#include <stdio.h>

void setThree(int *p) {
printf("p [address is %p] = %p\n", (void *) &p, (void *) p);
printf(" *p = %d\n", *p);

p=3;

int main(void) {
int x = 1; int y = 2; int *z = &x;
printf("x [address is %p] = %d\n", (void *) &x, x);
printf("y [address is %p] = %d\n", (void *) &y, y);
setThree(z);
setThree(&y);
printf("x [address is %p] = %d\n", (void *) &x, x);
printf("y [address is %p] = %d\n", (void *) &y, y);
return @;

Your Memory Addresses Will Very Likely be Different

The result of running the program (for me) is:
x [address is Oxffffd2c47f38] = 1

y [address is 1=2

p [address is Bxffffd2c47ee8] = Oxffffd2c47f38
*

p=1

p [address is Oxffffd2c47ee8] =

*p =2

x [address is Oxffffd2c47f38] = 3

y [address is 1=3

Note, the address of p may change between function calls

18

Now, We Should Understand the Swap Function

#include <stdio.h>
#include <stdlib.h>

void (int* a, int* b) {
int temp = *a;
*

a = *b;
*b = temp;
}
int (void) {
int a = 1;
int b = 2;
printf("main (before swap) a: %d, b: %d\n", a, b);
swap(&a, 8&b);
printf("main (after swap) a: %d, b: %d\n", a, b);
return EXIT_SUCCESS;
}

19

