
Arrays

2024 Winter APS 105 Computer Fundamentals
Jon Eyolfson

Lecture 13
1.1.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


WeHave For Loops for Repetition

However, loops don’t help us when we have multiple variables

What if we want to calculate the average of a bunch of grades?

1



Calculating theAverage is Error-Prone

int main(void) {
int grade1 = 75;
int grade2 = 83;
int grade3 = 99;
int grade4 = 64;
int grade5 = 72;
int average = (grade1 + grade2 + grade3 + grade4 + grade5) / 5;
printf("Average: %d\n", average);
return 0;

}

Every time we add a new variable, we have to:
1) Add it to the average calculation
2) Change the divisor

2



Arrays are for Groups of RelatedValues

We can declare a number of int all at once
The syntax for declaring arrays is:

<type> <name>[<array_size>];
Where you replace:

<type> by the type for each value (or element) of the array
<name> by a name you want to give the array (group of values)
<array_size> by the number of values you want to create

3



YouCanAccess EachValue Using Square Brackets

After you’ve declared an array, you can access a single element by writing:
<array_name>[<index>]

Where you replace:
<array_name> by the name you’ve given to an array
<index> by the element you’d like to select (as an integer)

We call it an index because counting starts at 0
C in arrays are zero-indexed (and most programming languages)

a[0] is the first value (or element), a[1] is the second value, etc.

4



YouCanAccess EachValue Using Square Brackets

After you’ve declared an array, you can access a single element by writing:
<array_name>[<index>]

Where you replace:
<array_name> by the name you’ve given to an array
<index> by the element you’d like to select (as an integer)

We call it an index because counting starts at 0
C in arrays are zero-indexed (and most programming languages)

a[0] is the first value (or element), a[1] is the second value, etc.

4



Let’s Use anArray Instead

int main(void) {
int grades[5];
grades[0] = 75;
grades[1] = 83;
grades[2] = 99;
grades[3] = 64;
grades[4] = 72;
int average = (grades[0] + grades[1] + grades[2] + grades[3] + grades[4])

/ 5;
printf("Average: %d\n", average);

}

Can we re-write the average calculation without writing all the values?

5



WeCanWrite a LoopOver Each Element of theArray

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int grades[5];
grades[0] = 75;
grades[1] = 83;
grades[2] = 99;
grades[3] = 64;
grades[4] = 72;
int sum = 0;
for (int i = 0; i < 5; ++i) {

sum += grades[i];
}
int average = sum / 5;
printf("Average: %d\n", average);
return EXIT_SUCCESS;

}
6



WeHave aMagic NumberWeWant to Get Rid Of

In the previous slide, we use 5 in multiple places
If we increase the length of the array to 6, we have to remember to:
Change the loop bounds to 6
Change the average calculation to divide by 6

We can use #define to get the C preprocessor to copy and paste for us

7



WeHave aMagic NumberWeWant to Get Rid Of

In the previous slide, we use 5 in multiple places
If we increase the length of the array to 6, we have to remember to:
Change the loop bounds to 6
Change the average calculation to divide by 6

We can use #define to get the C preprocessor to copy and paste for us

7



TheCPreprocessor Does a Search and Replace

We can write:
#define <search> <replacement>

Where you replace:
<search> by the string to replace (use ALL CAPS, separate words with _)
<replacement> by what you’d like to be written instead

You can write defines like a function (they can have arguments),
but you won’t have to write any yourself in this course

8



TheCPreprocessor Does a Search and Replace

We can write:
#define <search> <replacement>

Where you replace:
<search> by the string to replace (use ALL CAPS, separate words with _)
<replacement> by what you’d like to be written instead

You can write defines like a function (they can have arguments),
but you won’t have to write any yourself in this course

8



Let’s Remove theMagicValues

#include <stdio.h>

#define GRADES_LENGTH 5

int main(void) {
int grades[GRADES_LENGTH];
grades[0] = 75;
grades[1] = 83;
grades[2] = 99;
grades[3] = 64;
grades[4] = 72;
int sum = 0;
for (int i = 0; i < GRADES_LENGTH; ++i) {

sum += grades[i];
}
int average = sum / GRADES_LENGTH;
printf("Average: %d\n", average);
return 0;

} 9



WeCanAssignValues to Elements in the Declaration

The syntax for declaring arrays and assigning values is:
<type> <name>[<array_size>] = {<comma_separated_values>};

Where you replace:
<type> <name> <array_size> with the same rules as before
<comma_separated_values> with the values you’d like to assign (in order)
The values must match the type of the array

10



WeCanRemove theMultiple Assignment Statements

#include <stdio.h>
#include <stdlib.h>

#define GRADES_LENGTH 5

int main(void) {
int grades[GRADES_LENGTH] = {75, 83, 99, 64, 72};
int sum = 0;
for (int i = 0; i < GRADES_LENGTH; ++i) {

sum += grades[i];
}
int average = sum / GRADES_LENGTH;
printf("Average: %d\n", average);
return EXIT_SUCCESS;

}

11



Beware: YouCannot Reassign anArray Itself

#include <stdio.h>
#include <stdlib.h>

#define GRADES_LENGTH 5

int main(void) {
int grades[GRADES_LENGTH] = {75, 83, 99, 64, 72};
grades = 0;
return EXIT_SUCCESS;

}

Results in an error like:
error: array type 'int[5]' is not assignable

12



WhenWeAssignValues,WeCan Let C Figure out the Length

We can omit the <array_size> and use the following:
<type> <name>[] = {<comma_separated_values>};

C will create an array with a length equal to the number of values

We can write:
int grades[] = {75, 83, 99, 64, 72};

13



WhenWeAssignValues,WeCan Let C Figure out the Length

We can omit the <array_size> and use the following:
<type> <name>[] = {<comma_separated_values>};

C will create an array with a length equal to the number of values

We can write:
int grades[] = {75, 83, 99, 64, 72};

13



AnArray is Large Enough (inMemory) to HoldAll theValues

Assuming we have:
int grades[] = {75, 83, 99, 64, 72};

The grades array contains 5 int values
An int is 4 bytes, therefore the total size is 20 bytes

We can check the size (in bytes) of the array using the sizeof operator
sizeof(grades); 20

14



AnArray is Large Enough (inMemory) to HoldAll theValues

Assuming we have:
int grades[] = {75, 83, 99, 64, 72};

The grades array contains 5 int values
An int is 4 bytes, therefore the total size is 20 bytes

We can check the size (in bytes) of the array using the sizeof operator
sizeof(grades); 20

14



Beware: Programmer’s Often Use the Terms
Length and Size Interchangeably

Usually we don’t need to use the size (in bytes) of an array

So we might say the size of the array in the previous example is 5
(even though that’s different from the sizeof operator)

15



WeCanUse a #define to Calculate the Length of theArray
We call a #define that takes arguments a macro
We can use the following:

#define ARRAY_LENGTH(arr) (sizeof(arr) / sizeof((arr)[0]))
(you don’t have to understand this)

In the previous example:
ARRAY_LENGTH(grades) 5

16



NowWeCan RemoveAllMagicValues

#include <stdio.h>
#include <stdlib.h>

#define ARRAY_LENGTH(arr) (sizeof(arr) / sizeof((arr)[0]))

int main(void) {
int grades[] = {75, 83, 99, 64, 72};
int gradesLength = ARRAY_LENGTH(grades);
int sum = 0;
for (int i = 0; i < gradesLength; ++i) {

sum += grades[i];
}
int average = sum / gradesLength;
printf("Average: %d\n", average);
return EXIT_SUCCESS;

}

17



WeNeed to EnsureAll Array Indices areValid

Again, assuming we have:
int grades[] = {75, 83, 99, 64, 72};

We can only access:
grades[0] grades[1] grades[2] grades[3] grades[4]

In general if we have an array with a length, arrayLength, we can only access:
array[0] to array[arrayLength - 1]

18



WeNeed to EnsureAll Array Indices areValid

Again, assuming we have:
int grades[] = {75, 83, 99, 64, 72};

We can only access:
grades[0] grades[1] grades[2] grades[3] grades[4]

In general if we have an array with a length, arrayLength, we can only access:
array[0] to array[arrayLength - 1]

18



VeryOddThingsMayHappen If YouUse Invalid Indices

#include <stdio.h>

#define ARRAY_LENGTH(arr) (sizeof(arr) / sizeof((arr)[0]))

int main(void) {
int x = 1;
int grades[] = {75, 83, 99, 64, 72};
int gradesLength = ARRAY_LENGTH(grades);
int sum = 0;
for (int i = 0; i < gradesLength; ++i) {

sum += grades[i];
}
int average = sum / gradesLength;
printf("Average: %d\n", average);
grades[6] = 2; /* We should not do this! */
printf("x: %d\n", x);
return 0;

}
19



OneOddThing thatMayHappen in the Previous Slide

On some computers, grades[6] will re-assign x
We’ll see x: 2 printed, which is very confusing

Alwaysmake sure your array indices are in bounds!

20



OneOddThing thatMayHappen in the Previous Slide

On some computers, grades[6] will re-assign x
We’ll see x: 2 printed, which is very confusing

Alwaysmake sure your array indices are in bounds!

20


