
Dynamic Memory

2024 Winter APS 105 Computer Fundamentals
Jon Eyolfson

Lecture 20
1.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Recall: Local VariablesOnly ExistWhile the Function Runs

#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int x = 1;
return &x;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} Stack

main

foo
p: ?p: address

x: 1

1

Recall: Local VariablesOnly ExistWhile the Function Runs

#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int x = 1;
return &x;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} Stack

main

foo
p: ?p: address

x: 1

1

Recall: Local VariablesOnly ExistWhile the Function Runs

#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int x = 1;
return &x;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} Stack

main

foo
p: ?p: address

x: 1

1

Recall: Local VariablesOnly ExistWhile the Function Runs

#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int x = 1;
return &x;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} Stack

main

foo
p: ?p: address

x: 1

1

CanWeReturn a Pointer toMemoryCreated in a Function?

Any variables in a function are allocated (created in memory) on the “stack”

So previously, int x only exists in memory as long as we’re running foo

2

WeCan Explicitly AllocateMemory

There’s another region of memory C can use that
is unrelated to the current running function

This region of memory is called the “heap”

It comes from the literal word heap:
“a large amount or number of”

3

WeCanRequestMemoryUsing malloc
Its function prototype in the C standard library is:

void* malloc(size_t size);
size_t is basically a positive integer type
(the sizeof(size_t) depends on your machine)

The size argument is how many contiguous bytes to allocate

malloc returns a pointer to a starting address,
you may then use size contiguous bytes

4

WeCanRequestMemoryUsing malloc
Its function prototype in the C standard library is:

void* malloc(size_t size);
size_t is basically a positive integer type
(the sizeof(size_t) depends on your machine)

The size argument is how many contiguous bytes to allocate

malloc returns a pointer to a starting address,
you may then use size contiguous bytes

4

YouWill See the TermAPI in Software

API stands for Application Programming Interface, and it
tells you how to use a library (functions, types, etc.)

You may say “what’s the malloc API?”

5

WeCanCreate a Pointer to an intUsing malloc
For example:

int *p = malloc(sizeof(int));

This creates a pointer to an int, pointing to 4 contiguous bytes on the heap
The value it’s pointing to is undefined, meaning it could be anything

However, we can initialize the value by dereferencing it

6

WeCanCreate a Pointer to an intUsing malloc
For example:

int *p = malloc(sizeof(int));

This creates a pointer to an int, pointing to 4 contiguous bytes on the heap
The value it’s pointing to is undefined, meaning it could be anything

However, we can initialize the value by dereferencing it

6

WeCanReturn Pointers That are Still Valid
#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int *p = malloc(sizeof(int));
*p = 1;
return p;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} StackHeap

main
p: ?p: address
foo

p: address

?1

7

WeCanReturn Pointers That are Still Valid
#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int *p = malloc(sizeof(int));
*p = 1;
return p;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} StackHeap

main
p: ?p: address
foo

p: address

?1

7

WeCanReturn Pointers That are Still Valid
#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int *p = malloc(sizeof(int));
*p = 1;
return p;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} StackHeap

main
p: ?p: address
foo

p: address

?1

7

WeCanReturn Pointers That are Still Valid
#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int *p = malloc(sizeof(int));
*p = 1;
return p;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} StackHeap

main
p: ?p: address
foo

p: address

?1

7

WeCanReturn Pointers That are Still Valid
#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int *p = malloc(sizeof(int));
*p = 1;
return p;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} StackHeap

main
p: ?p: address
foo

p: address

?1

7

mallocCanRunOut ofMemory and Return an Error
If there’s no more room in the heap, malloc returns NULL
You should check the return value of malloc
Otherwise, you may dereference NULL!

8

WeHave aNewResponsibility, Deallocating

Previously, when the function returns, all the variables disappear
They’re no longer valid, and your computer can re-use the memory

We say the memory is deallocated, meaning you’re done using it

For memory allocated with malloc, we have to deallocate it

9

WeCanDeallocate Using the free Function
Its function prototype in the C standard library is:

void free(void *ptr);
The pointer argument, ptr, needs to be the address returned from malloc
Afterwards you cannot use the memory pointed to by ptr

If the value of ptr is NULL then free does nothing

10

WeCanDeallocate Using the free Function
Its function prototype in the C standard library is:

void free(void *ptr);
The pointer argument, ptr, needs to be the address returned from malloc
Afterwards you cannot use the memory pointed to by ptr

If the value of ptr is NULL then free does nothing

10

WeShould DeallocateMemoryWhenWeNo Longer Use It

#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int *p = malloc(sizeof(int));
*p = 1;
return p;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
free(p);
return EXIT_SUCCESS;

}

11

Forgetting to DeallocateMemory is Called aMemory Leak

Your program would be using more memory than it actually needs to function

This is a big problem when your program runs for a long time!
You may actually run out of memory, and slow down other programs

12

YouCanUse a Tool Called valgrind to DetectMemory Issues
If you run your program normally in the terminal using: build/valid-pointer
you can use: valgrind build/valid-pointer

If you forget to free in the previous example, you’ll see:
==int== LEAK SUMMARY:
==int== definitely lost: 4 bytes in 1 blocks
==int== indirectly lost: 0 bytes in 0 blocks
==int== possibly lost: 0 bytes in 0 blocks
==int== still reachable: 0 bytes in 0 blocks
==int== suppressed: 0 bytes in 0 blocks
==int== Rerun with --leak-check=full to see details of leaked memory
==int==
==int== For lists of detected and suppressed errors, rerun with: -s
==int== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

13

YouCan Follow valgrind’s Directions to GetMore Information
You can run it again with: valgrind --leak-check=full build/valid-pointer
You’ll see the same as before but also with:

==int== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1
==int== at 0x48850C8: malloc (vg_replace_malloc.c:381)
==int== by 0x1087E3: foo (valid-pointer.c:5)
==int== by 0x10880B: main (valid-pointer.c:11)

This tells you what malloc you forgot to free
main called foo, then foo called malloc, therefore the malloc on line 5 leaked

14

YouCan Follow valgrind’s Directions to GetMore Information
You can run it again with: valgrind --leak-check=full build/valid-pointer
You’ll see the same as before but also with:

==int== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1
==int== at 0x48850C8: malloc (vg_replace_malloc.c:381)
==int== by 0x1087E3: foo (valid-pointer.c:5)
==int== by 0x10880B: main (valid-pointer.c:11)

This tells you what malloc you forgot to free
main called foo, then foo called malloc, therefore the malloc on line 5 leaked

14

Our Full ExampleShouldMakeSureWe’reNotOut ofMemory

#include <stdio.h>
#include <stdlib.h>

int *foo(void) {
int *p = malloc(sizeof(int));
if (p == NULL) {

exit(EXIT_FAILURE);
}
*p = 1;
return p;

}

int main(void) {
int *p = foo();
printf("*p: %d\n", *p);
free(p);
return EXIT_SUCCESS;

}
15

The exit Function Immediately EndsYour Program
Its function prototype in the C standard library is:

void exit(int status);
This behaves the same as returning from main
The status tells the OS whether there was an issue with your program

For this course we can just use EXIT_SUCCESS or EXIT_FAILURE

16

WeShouldNot Use theMemoryAfterWe free
#include <stdio.h>
#include <stdlib.h>

int main(void) {
int *p = malloc(sizeof(int));
*p = 14;
free(p);
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} StackHeap

main
p: address

?14

17

WeShouldNot Use theMemoryAfterWe free
#include <stdio.h>
#include <stdlib.h>

int main(void) {
int *p = malloc(sizeof(int));
*p = 14;
free(p);
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} StackHeap

main
p: address

?14

17

WeShouldNot Use theMemoryAfterWe free
#include <stdio.h>
#include <stdlib.h>

int main(void) {
int *p = malloc(sizeof(int));
*p = 14;
free(p);
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} StackHeap

main
p: address

?14

17

WeShouldNot Use theMemoryAfterWe free
#include <stdio.h>
#include <stdlib.h>

int main(void) {
int *p = malloc(sizeof(int));
*p = 14;
free(p);
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} StackHeap

main
p: address

?14

17

WeShouldNot Use theMemoryAfterWe free
#include <stdio.h>
#include <stdlib.h>

int main(void) {
int *p = malloc(sizeof(int));
*p = 14;
free(p);
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

} StackHeap

main
p: address

?14

17

TheValueWeRead fromMemory is UndefinedAfter the free
The issue in the previous slide is called use after free
You may also hear that p is a dangling pointer

It is good practice to set the pointer to NULL after freeing:
free(p);
p = NULL;

Now we’ll see a segmentation fault immediately instead of an undefined value

18

TheValueWeRead fromMemory is UndefinedAfter the free
The issue in the previous slide is called use after free
You may also hear that p is a dangling pointer

It is good practice to set the pointer to NULL after freeing:
free(p);
p = NULL;

Now we’ll see a segmentation fault immediately instead of an undefined value

18

YouAlsoCannot Call freeTwice on the SamePointer
#include <stdio.h>
#include <stdlib.h>

int main(void) {
int *p = malloc(sizeof(int));
*p = 14;
free(p);
free(p);
printf("*p: %d\n", *p);
return EXIT_SUCCESS;

}

You’ll get a run-time error like:
free(): double free detected in tcache 2

19

valgrindCanHelpYouDebug the TwoPrevious Issues
valgrind will let you know if you’re accessing invalid memory
(likely because of a use-after-free or dangling pointer)

valgrind will also let you know which two lines called free
(this helps you debug the double free)

20

Let’s Define Some Functions ThatWork onArrays

#include <stdio.h>
#include <stdlib.h>

void randomizeArray(int array[], int arrayLength) {
for (int i = 0; i < arrayLength; ++i) {

array[i] = rand() % 100 + 1;
}

}

void printArray(int array[], int arrayLength) {
printf("array:");
for (int i = 0; i < arrayLength; ++i) {

printf(" %d", array[i]);
}
printf("\n");

}

21

WeCanDynamically Allocate anArray!

int main(void) {
int arrayLength = 0;
do {

printf("Enter the length of the array: ");
scanf("%d", &arrayLength);

} while (arrayLength <= 0);

int *array = malloc(sizeof(int) * arrayLength);
if (array == NULL) { return EXIT_FAILURE; }

randomizeArray(array, arrayLength);
printArray(array, arrayLength);

free(array);
array = NULL;

return EXIT_SUCCESS;
}

22

UseDynamicMemoryOnlyWhenNeeded

Dynamic memory is tricky to get correct, you need to:
Remember to free when you’re done using the memory
Don’t try to use the memory after you free (use-after-free)
Don’t call free twice on the same pointer (double free)

You should only use it when:
Your function needs to return a pointer to valid memory
You do not know the amount of memory you need at compile-time

23

