Strings

2024 Winter APS 105: Computer Fundamentals Lecture 22
Jon Eyolfson 1.8.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

A String is an Array of Characters

In order to know a string ends, C adds a 0 byte (character '\8')

Assume ASCII encoded strings (characters represented on a US keyboard)

String Literals are Between Double Quotes

For example, "Hello world" is a string literal

C stores the bytes used for string literals in read-only memory
Read-only means you're not allowed to modify (assign) values

The result of a string literal is a pointer to the start of the string

String Literals are Between Double Quotes

For example, "Hello world" is a string literal

C stores the bytes used for string literals in read-only memory
Read-only means you're not allowed to modify (assign) values

The result of a string literal is a pointer to the start of the string
The type of a string literal is: const char *

i i char
It's a pointer (array decay) representing an array of ch
const means we cannot assign the char values

The Format Specifier for C Strings is fis

We can use it in printf, like so:
printf("%s %s\n", "Hello" "world");

C will print all of the characters, in order,
up to (and not including) the null byte ()

We'll see later that using %s in scanf is not a good idea

We Cannot Modify the Values in a String Literal

#include <stdio.h>
#include <stdlib.h>

int (void) §
char *s = "Hello world";
s[8] = 'h';
printf("s: %s\n", s);
return EXIT_SUCCESS;

}

We can compile this program, and when we run it we get a segfault

We Should Use const char * for String Literals

#include <stdio.h>
#include <stdlib.h>

int (void) {
const char *s = "Hello world";
s[6] = 'h';
printf("s: %s\n", s);
return EXIT_SUCCESS;
}

Now we get a compiler error instead!

error: assignment of read-only location '*s'
s[8] = 'h';

We Can Create an Array in a Function, and Modify the String

Recall, if we declare an array using: char s[] = ;
The array is stored on the stack

There's a special rule for string Ilterals if we do:
char s[] =
C copies the char values onto the stack for s

This means we're allowed to modify the string

We Can Modify a String on the Stack

#include <stdio.h>
#include <stdlib.h>

int (void) §
char s[] = "Hello world";
s[e] = 'h';
printf("s: %s\n", s);
return EXIT_SUCCESS;

}

Running this program prints:
s: hello world

C Knows How Many Bytes to Copy from a String Literal

If we write: char s[] = "Hello";
ARRAY_LENGTH(s) 6

It would be equivalent if we did:
Char S[] - {|HI, Iel, Ill’ I].I, IOI’ I\Bl};

We Could Create a Larger Array than We Need

For example: char s[8] = "Hello";

The same rule applies as before, the rest of the array fills with O values

It would be equivalent if we did:
Char 5[8] = {IHI, Iel, Ill’ lll’ IOI, I\Bl’ l\el, |\8|};

We Could Create a Larger Array than We Need

For example: char s[8] = "Hello";

The same rule applies as before, the rest of the array fills with O values

It would be equivalent if we did:
Char 3[8] = {IHI, Iel, Ill’ lll’ IOI, I\Bl’ I\BI, |\8|};

We would stop when we encounter the first '\8', so the others don't matter

However, A Smaller Array Causes Big Issues

#include <stdio.h>
#include <stdlib.h>

int (void) §
char s[8] = "Hello world";
printf("%s\n", s);
return EXIT_SUCCESS;

}

We would only copy "Hello wo" with no null byte
Our output would only stop when we happen to find a 0 in memory

18

We Can Write a Function to Count the Number of Spaces

#include <stdio.h>

int (const char *s) {
int count = 0@;
while (*s != "\0") {
if (*s =="'") {
++count;

}

++g;

}

return count;

}

int (void) {
const char *s = "Hello world";
printf("countSpaces(s): %d\n", countSpaces(s));
return @;

I

We Could Also Count the Number Characters in a String

#include <stdio.h>
#include <stdlib.h>

int (const char *s) {
int i = 0;
while (s[i] '= "\8") {
++1;
}
return i;
}

int (void) {
const char *s = "Hello";
printf("stringlength(s): %d\n", stringlLength(s));
return EXIT_SUCCESS;

}

Note: this is one less than the number of bytes we need to store a C string!

12

We Can Use puts Instead of printf for Strings

The puts(s) takes a single string argument
It's equivalent to: printf("%s\n", s);

13

We Can Use “Rounding” to Print the First Few Characters

#include <stdio.h>
#include <stdlib.h>

int (void) {
const char *s = "Hello there";
puts(s);
printf("%s\n", s + 6);
printf("%.5s\n", s);
return EXIT_SUCCESS;

14

We Can Use “Rounding” to Print the First Few Characters

#include <stdio.h>
#include <stdlib.h>

int (void) {
const char *s = "Hello there";
puts(s);
printf("%s\n", s + 6);
printf("%.5s\n", s);
return EXIT_SUCCESS;

Prints:

Hello there
there
Hello

14

We Could, But Shouldn’'t Use scanf with Strings

scanf ignores whitespace before characters the user enters
Matches any characters until a whitespace character
It'll also terminate the string with a O byte

This means the string produced will not have any whitespace characters

This function is impossible to use correctly since
you don't know how much memory you need

15

If the User Enters Too Many Characters,
scanf May Use Invalid Memory

#include <stdio.h>
#include <stdlib.h>

int (void) §
int x = 123456789;
printf("Input your last name: ");
char s[4];
scanf("%s", s);
printf("s: %s\n", s);
printf("x: %d\n", x);
return EXIT_SUCCESS;
}

Any input of 4 characters changes x

16

The gets Function has the Same Issue

gets is the opposite of puts
gets(s) reads all character until a newline
(but doesn't keep the newline character)

The issue is called a buffer overflow
We're writing data beyond the space we set aside
We call the memory we intend a function to write to a buffer

17

We Could Use fgets Instead of gets

fgets allows you to specify the size of the buffer, its APl is:
char* (char *str, int size, FILE *stream);

For this function:
str is a pointer to size bytes of valid memory
size is an integer representing how many bytes to write (at most)
stream should just be stdin (represents terminal input, declared in stdio.h)

The produced string will have a null byte,
so there's size - 1 characters in the string

18

We'll Print at Most 3 Characters from the User's Input

#include <stdio.h>
#include <stdlib.h>

#define BUFFER_SIZE 4

int (void) §
printf("Input your last name: ");
char s[BUFFER_SIZE];
fgets(s, BUFFER_SIZE, stdin);
printf("s: %s\n", s);
return EXIT_SUCCESS;

19

You Should Use getline
getline will allocate memory for you, it's API is:
ssize_t (char **bufferp, size_t *sizep, FILE *stream);
If you initialize the value at bufferp with NULL and sizep it'll for you
It will match an entire line including whitespace and the ending newline

It returns the number of characters written (excluding the null byte)

28

A Example That Remembers to

#include <stdio.h>
#include <stdlib.h>

int (void) §
char *s = NULL;
size_t size = 0;
ssize_t bytes_written = getline(&s, &size, stdin);
s[bytes_written - 1] = '\@8';
printf("size: %lu, bytes_written: %1d, s: %s\n", size, bytes_written, s);
free(s);
return EXIT_SUCCESS;

21

Strings Use Memory, and are Difficult to Use Correctly

You need to always ensure there's a null byte at the end
The format specifier (that you should only use for) is %s

You need to make sure there's enough memory to hold the string
Buffer overflows are a serious security issue

For user input you should use either or

22

