More Recursion

2024 Winter APS 105: Computer Fundamentals Lecture 26
Jon Eyolfson 1.8.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License


http://creativecommons.org/licenses/by-sa/4.0/

A Recursive Function Calls Itself

We need two things:
1. a base case: a simple solution we know
2. arecursive step: reduces the problem to a smaller version of itself



Computing the Greatest Common Divisor (GCD)

The GCD of two integers a and b, is the largest integer d
that is a divisor of both a and b

We'll assume all integers are positive and greater than 0



The Euclidean Algorithm for Finding the GCD

Find the largest common divisor, d, of integers a and b

Given:a>b
Replace gcd(a, b) with ged(b, a % b)
until gcd(d, 8), where d is the GCD

We can write a recursive solution to this problem!



Findingthe GCDinC

int (int a, int b) {
if (b ==0) {
return a;

}
if (a >=b) {
return gecd(b, a % b);

else {
return gcd(b, a);
3

}

For more practice, you could try to solve this using a loop instead



Can We Count to 5 Recursively?

Think about how we'd write this function



Counting from 1to 5 Recursively

#include <stdio.h>
#include <stdlib.h>

void (int n) §
if (n <= 0) {
return;
3

printf("%d\n", n);
count(n - 1);

}

int (void) §
count(5);
return EXIT_SUCCESS;
}

What happens if we move printf to AFTER the recursive call?



Moving printf Counts from 5 to 1Instead

#include <stdio.h>
#include <stdlib.h>

void (int n) §
if (n <= 0) {
return;
3

count(n - 1);
printf("%d\n", n);

int (void) {
count(5);
return EXIT_SUCCESS;



What About Computing the Sum of an Array Recursively?

We can use our same two rules for this as well!



Computing the Sum of An Array, Recursively

int (int *array, int arraylLength) {
if (arraylLength == 8) {

return @;
3
else {

return array[8] + sum(array + 1, arraylLength - 1);
3



Maybe We Think of Another Solution

int sum(int *array, int arraylLength, int currentSum) {
if (arraylLength == 8) {
return currentSum;

}
else {

return sum(array + 1, arraylength - 1, array[8] + currentSum);
}

18



Having an Extra Argument Can Be Confusing

Instead of:

int (int *array, int arraylLength, int currentSum);
It would be easier to use:

int (int *array, int arraylength);

We can create a "helper"” function that has all the arguments,
and use it in our easier to use function

I



Another Sum Solution with a Helper Function

int (int *array, int arraylength, int currentSum) {
if (arraylLength == 8) {
return currentSum;

3
else {

return sum_helper(array + 1, arraylength - 1, array[8] + currentSum);
3

}

int (int *array, int arraylength) {
return sum_helper(array, arraylength, 0);
}

12



Can We Solve the Tower of Hanoi Recursively?
You want to move the tower of disks from rod 1to 3 (peg numbers in white)

1. You can only move one disk at a time
2. You can move the top disk from a rod and place it at the top of another rod

3. You cannot place a larger disk on top of a smaller one

13



Let's Solve the Tower of Hanoi with 2 Disks

14



Let's Solve the Tower of Hanoi with 2 Disks

Move disk 1to rod 2

14



Let's Solve the Tower of Hanoi with 2 Disks

Move disk 2 to rod 3

—

14



Let's Solve the Tower of Hanoi with 2 Disks

Move disk 1to rod 3

14



Let's Solve the Tower of Hanoi with 2 Disks

What happens if we move disk 1to rod 3 first?

14



Let's Solve the Tower of Hanoi with 3 Disks

15



Let's Solve the Tower of Hanoi with 3 Disks

Move disk 1to rod 3

15



Let's Solve the Tower of Hanoi with 3 Disks

Move disk 2 to rod 2

—

15



Let's Solve the Tower of Hanoi with 3 Disks

Move disk 1to rod 2

15



Let's Solve the Tower of Hanoi with 3 Disks

Move disk 3 to rod 3

15



Let's Solve the Tower of Hanoi with 3 Disks

Move disk 1to rod 1

15



Let's Solve the Tower of Hanoi with 3 Disks

Move disk 2 to rod 3

—

15



Let's Solve the Tower of Hanoi with 3 Disks

Move disk 1to rod 3

15



Let's Solve the Tower of Hanoi with 3 Disks

We can solve this in 7 steps. Did you notice a recursive pattern?

15



Discovering the Recursive Pattern to the Tower of Hanoi

Problem: Move 4 disks from rod 1to 3

16



Discovering the Recursive Pattern to the Tower of Hanoi

Move 3 disks from rod 1to 2

16



Discovering the Recursive Pattern to the Tower of Hanoi

Move disk 4 to rod 3

16



Discovering the Recursive Pattern to the Tower of Hanoi

Move 3 disks from rod 2 to 3

16



We Can Solve the Tower of Hanoi with 2 Subproblems

Generalize the rods: from, to, and spare

We have a subproblem:
any smaller disk can go on top of the one we're solving for

To move n disks from from to to using spare as spare
1. Move n — 1 disks from from to spare using to as spare

2. Move disk n from from to to
3. Move n — 1disks from spare to to using from as spare

What are we missing?

17



Our Tower of Hanoi Solution is Compact

int (int disks, int from_rod, int to_rod, int spare_rod) {

if (disks == 8) {
return 0;
3

int steps = hanoi(disks - 1, from_rod, spare_rod, to_rod);
printf("Move disk %d to rod %d\n", disks, to_rod);

steps += 1;

steps += hanoi(disks - 1, spare_rod, to_rod, from_rod);
return steps;

18



