
String
Recursion Exercises

2024 Winter APS 105 Computer Fundamentals
Jon Eyolfson

Lecture 27
1.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

ARecursive FunctionCalls Itself

We need two things:
1. a base case: a simple solution we know
2. a recursive step: reduces the problem to a smaller version of itself

1

Recursionwith Strings

There are 3 major ways to think about recursively using strings:
1. A character followed by a smaller string
2. A smaller string preceding a character
3. Two characters enclosing a smaller string

2

CanWeRecursively Check if a String is a Palindrome?

Reminder: a palindrome is a string that’s the same forwards as backwards

3

ARecursive Solution to Checking a Palindrome

bool is_palindrome_helper(const char *s, int first, int last) {
if (first >= last) {

return true;
}
else if (s[first] != s[last]) {

return false;
}
else {

return is_palindrome_helper(s, first + 1, last - 1);
}

}

bool is_palindrome(const char *s) {
return is_palindrome_helper(s, 0, strlen(s) - 1);

}

4

The following is more C features that you shouldn’t use for this course
However, you may need to read them, or use them in the future

5

There is a Ternary Conditional Operator

It’s another expression with the syntax:
<conditional> ? <value_if_true> : <value_if_false>

Where you replace:
<conditional> by a boolean expression
<value_if_true> is the result of the expression if the conditional is true
<value_if_false> is the result of the expression if the conditional is false

Examples:
true ? 1 : 0 1
false ? 1 : 0 0

You should only use these for very simple expressions
otherwise, the equivalent if and else is clearer

6

There is a Ternary Conditional Operator

It’s another expression with the syntax:
<conditional> ? <value_if_true> : <value_if_false>

Where you replace:
<conditional> by a boolean expression
<value_if_true> is the result of the expression if the conditional is true
<value_if_false> is the result of the expression if the conditional is false

Examples:
true ? 1 : 0 1
false ? 1 : 0 0

You should only use these for very simple expressions
otherwise, the equivalent if and else is clearer

6

YouCanGiveYour OwnMeaning toNumberswith enum
You can create your own type with enum, its syntax is:

enum <category_name> {
<value1_name> = <value1_int>,
<value2_name> = <value2_int>,
<...>,

};
Where you replace:

<category_name> with the name of what the values represent
<value1_name> with the name of something you want to give a value to
<value2_int> with the number you want C to use for that name
You can create as many values as you want separated by commas

You should define an enum just below the includes, and not within a function

7

WeCould Create an enumThat Represents aMonth
enum month {

JANUARY = 1,
FEBRUARY = 2,
MARCH = 3,
APRIL = 4,
MAY = 5,
JUNE = 6,
JULY = 7,
AUGUST = 8,
SEPTEMBER = 9,
OCTOBER = 10,
NOVEMBER = 11,
DECEMBER = 12,

};

8

An enum is Basically an int, But InsteadYouCanUseNames
bool isWinterSemester(enum month month) {

return month == JANUARY
|| month == FEBRUARY
|| month == MARCH
|| month == APRIL;

}

int main(void) {
enum month month;
printf("Enter a month (1-12): ");
scanf("%d", &month);
if (isWinterSemester(month)) {

printf("The month is probably the winter semester\n");
}
else {

printf("The month is not in the winter semester\n");
}
return EXIT_SUCCESS;

} 9

WeCould Create an enumThat Represents a Direction
enum direction {

NORTH = 1,
EAST,
SOUTH,
WEST,

};

If we don’t specify an integer value for the rest of the values,
C creates values by just incrementing the integers sequentially
If you don’t specify any values, the first value is by default 0

The above is equivalent to:
enum direction {

NORTH = 1,
EAST = 2,
SOUTH = 3,
WEST = 4,

};
10

Creating a Function to PrintWhat theValue Represents

void printDirection(enum direction d) {
if (d == NORTH) {

printf("North\n");
}
else if (d == EAST) {

printf("East\n");
}
else if (d == SOUTH) {

printf("South\n");
}
else if (d == WEST) {

printf("West\n");
}
else {

exit(EXIT_FAILURE);
}

}
11

Instead ofMany ifs that Check aValue, Use a switch
The syntax of a switch statement is:

switch (<variable>) {
case <value1>:
case <value2>:
<...>
}

C will skip to the case statement for the matching value and start running code
It’ll continue running (any other case statement is ignored) until:
a break; statment, skipping to the closing } for the switch, or
it runs until the closing } for the switch

We can use default: to represent where to go if there is not a match
Otherwise, if there’s no match, we skip to the end

12

Re-writing the Previous Function to Use a switchStatement
void printDirection(enum direction d) {

switch (d) {
case NORTH:

printf("North\n");
break;

case EAST:
printf("East\n");
break;

case SOUTH:
printf("South\n");
break;

case WEST:
printf("West\n");
break;

default:
exit(EXIT_FAILURE);

}
}

13

YouCan RenameTypeswith typedef
The syntax of a typedef, is:

typedef <type> <new_name>;
Where you replace:

<new_name> by the name of whatever you’d like to name your type
<type> by the type you would like to use when you use <new_name>

For example, you could write:
typedef int number_t;

Aftewards, you could declare variables with type number_t, then later
change all your types by modifying to typedef double number_t;

Note, usually you append _t to the name to indicate it’s a type

14

YouCan RenameTypeswith typedef
The syntax of a typedef, is:

typedef <type> <new_name>;
Where you replace:

<new_name> by the name of whatever you’d like to name your type
<type> by the type you would like to use when you use <new_name>

For example, you could write:
typedef int number_t;

Aftewards, you could declare variables with type number_t, then later
change all your types by modifying to typedef double number_t;

Note, usually you append _t to the name to indicate it’s a type

14

Generally, Creating a typedef For Numbers is a Bad Idea
#include <stdio.h>
#include <stdlib.h>

typedef int number_t;

int main(void) {
number_t a = 2;
number_t b = 3;
printf("a + b = %d\n", a + b);
return EXIT_SUCCESS;

}

What happens if we change to typedef double number_t;?

15

ATypical Use of typedef Is to SaveUs fromWriting enum
You’re able to create an enum without giving it a name, you may write:

typedef enum {
NORTH = 1,
EAST,
SOUTH,
WEST,

} direction_t;

Afterwards, you can create a variable with:
direction_t direction = NORTH;

16

Final Exercise, Going Back to String Recursion

Can we implement strchr recursively?

17

