String
Recursion Exercises

2024 Winter APS 105: Computer Fundamentals Lecture 27
Jon Eyolfson 1.8.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

A Recursive Function Calls Itself

We need two things:
1. a base case: a simple solution we know
2. arecursive step: reduces the problem to a smaller version of itself

Recursion with Strings
There are 3 major ways to think about recursively using strings

1. A character followed by a smaller string
2. A smaller string preceding a character
3. Two characters enclosing a smaller string

Can We Recursively Check if a String is a Palindrome?

Reminder: a palindrome is a string that's the same forwards as backwards

A Recursive Solution to Checking a Palindrome

bool (const char *s, int first, int last) {
if (first >= last) {
return true;
}

else if (s[first] != s[last]) {
return false;

}
else {
return is_palindrome_helper(s, first + 1, last - 1);
}
}
bool (const char *s) {

return is_palindrome_helper(s, 8, strlen(s) - 1);

}

The following is more C features that you shouldn't use for this course
However, you may need to read them, or use them in the future

There is a Ternary Conditional Operator

It's another expression with the syntax:
<conditional> ? <value_if_true> : <value_if_false>

Where you replace:
<conditional> by a boolean expression
<value_if_true> is the result of the expression if the conditional is true
<value_if_false> is the result of the expression if the conditional is false

There is a Ternary Conditional Operator

It's another expression with the syntax:
<conditional> ? <value_if_true> : <value_if_false>

Where you replace:
<conditional> by a boolean expression
<value_if_true> is the result of the expression if the conditional is true
<value_if_false> is the result of the expression if the conditional is false

Examples:
true 21 : 0 1
false 7 1 : 0 0

You should only use these for very simple expressions
otherwise, the equivalent if and else is clearer

You Can Give Your Own Meaning to Numbers with enum

You can create your own type with enum, its syntax is:
enum <category_name> {
<valuel_name> = <valuel_int>,
<value?_name> = <valueZ_int>,
<...>

b

Where you replace:
<category_name> with the name of what the values represent
<valuel_name> with the name of something you want to give a value to
<value2_int> with the number you want C to use for that name
You can create as many values as you want separated by commas

’

You should define an enum just below the includes, and not within a function

We Could Create an enum That Represents a Month

enum month {
JANUARY = 1,
FEBRUARY = 2,
MARCH = 3,
4,

JUNE = 6,
JuLy = 7,

SEPTEMBER = 9,
OCTOBER = 16,
NOVEMBER = 11,
DECEMBER = 12,

An enun is Basically an int, But Instead You Can Use Names

bool (enum month month) {
return month == JANUARY
| | month == FEBRUARY
|| month == MARCH
|| month == APRIL;
}

int (void) {
enum month month;
printf("Enter a month (1-12): ");
scanf("%d", &month);
if (isWinterSemester(month)) {
printf("The month is probably the winter semester\n");

else {
printf("The month is not in the winter semester\n");

return EXIT_SUCCESS;

We Could Create an enun That Represents a Direction

enum direction {
NORTH = 1,
EAST,
SOUTH,
WEST,

};

If we don't specify an integer value for the rest of the values,
C creates values by just incrementing the integers sequentially
If you don't specify any values, the first value is by default @

The above is equivalent to:

enum direction {
NORTH = 1,
EAST = 2,
SOUTH = 3,
WEST = 4,
};
10

Creating a Function to Print What the Value Represents

void (enum direction d) {
if (d == NORTH) {
printf("North\n");

3

else if (d == EAST) {
printf("East\n");

3

else if (d == SOUTH) {
printf("South\n");

else if (d == WEST) {
printf("West\n");

else {
exit(EXIT_FAILURE);
}
}

Instead of Many ifs that Check a Value, Use a switch

The syntax of a switch statement is:
switch (<variable>) {
case <valuel>:
case <value2>:
<...0>

}

C will skip to the case statement for the matching value and start running code
It'll continue running (any other case statement is ignored) until:
a break; statment, skipping to the closing } for the switch, or
it runs until the closing } for the switch

We can use default: to represent where to go if there is not a match
Otherwise, if there's no match, we skip to the end

12

Re-writing the Previous Function to Use a switch Statement

void (enum direction d) {

switch (d) {

case NORTH:
printf("North\n");
break;

case EAST:
printf("East\n");
break;

case SOUTH:
printf("South\n");
break;

case WEST:
printf("West\n");
break;

default:
exit(EXIT_FAILURE);

}

You Can Rename Types with typedef

The syntax of a typedef, is:
typedef <type> <new_name>;

Where you replace:
<new_name> by the name of whatever you'd like to name your type
<type> by the type you would like to use when you use <new_name>

14

You Can Rename Types with typedef
The syntax of a typedef, is:
typedef <type> <new_name>;

Where you replace:
<new_name> by the name of whatever you'd like to name your type
<type> by the type you would like to use when you use <new_name>

For example, you could write:
typedef int number_t;

Aftewards, you could declare variables with type number_t, then later
change all your types by modifying to typedef double number_t;

Note, usually you append _t to the name to indicate it's a type

14

Generally, Creating a typedef For Numbers is a Bad Idea

#include <stdio.h>
#include <stdlib.h>

typedef int number_t;
int (void) §
number_t a =
number_t b =
printf("a + b = %d\n", a + b);
return EXIT_SUCCESS;

2;
3;

}
What happens if we change to typedef double number_t;?

A Typical Use of typedef Is to Save Us from Writing enum

You're able to create an enum without giving it a name, you may write:

typedef enum {
NORTH = 1,
EAST,
SOUTH,
WEST,

} direction_t;

Afterwards, you can create a variable with:
direction_t direction = NORTH;

16

Final Exercise, Going Back to String Recursion

Can we implement recursively?

17

