
What is a Linked List?

2024 Winter APS 105 Computer Fundamentals
Jon Eyolfson

Lecture 29
1.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


Arrays Lack Flexibility

What if we used an array to represent a line of people taking turns

Assume we have four people in line, and we assign them each a number

The order of people is the same as the order of the array
The number at index 0 is at the front of the line

Let’s code putting the person at the front of the line to the back

1



Moving the First Number to the Back of anArray

#define ARRAY_LENGTH(array) (sizeof((array))/sizeof((array)[0]))

void moveArray(int array[], int arrayLength) {
int first = array[0];
for (int i = 0; i < arrayLength - 1; ++i) {

array[i] = array[i + 1];
}
array[arrayLength - 1] = first;

}

int main(void) {
int array[] = {1, 2, 3, 4};
int arrayLength = ARRAY_LENGTH(array);
moveArray(array, arrayLength);
return EXIT_SUCCESS;

}

2



That’s A Lot of Assignments

Every time we shift by one we need to do n+ 1 assignments,
where n is the array length

Generally, we don’t want the amount of work to scale

You’ll learn to analyze algorithms in the follow-up course

3



TheOrder Between theOther Numbers Doesn’t Change

For each number, we can keep track which one is next

We can also keep track of who is at the front of the line

This is also equivalent to having an ordered list

4



TheData Structure that Implements That Idea is a Linked List

We create a “node” structure in C that contains our data, and which is next

typedef struct node node_t;

typedef struct node {
int val;
node_t *next;

} node_t;

We can’t use node_t next; because that would be infinite recursion!
A pointer lets us use NULL to represent there is no next node
We track the head (first node) of the list with a node_t * variable

5



TheData Structure that Implements That Idea is a Linked List

We create a “node” structure in C that contains our data, and which is next

typedef struct node node_t;

typedef struct node {
int val;
node_t *next;

} node_t;

We can’t use node_t next; because that would be infinite recursion!
A pointer lets us use NULL to represent there is no next node
We track the head (first node) of the list with a node_t * variable

5



WeCanRepresent Our Numbers as a Linked List

head

val: 1 next val: 2 next val: 3 next val: 4 next

6



Our Final Goal Changes 3 Pointers

head

val: 1 next val: 2 next val: 3 next val: 4 next

7



Let’s Create That List in C

#include <stdio.h>
#include <stdlib.h>

int main(void) {
node_t n4 = {4, NULL};
node_t n3 = {3, &n4};
node_t n2 = {2, &n3};
node_t n1 = {1, &n2};
node_t *head = &n1;
return EXIT_SUCCESS;

}

8



HowWeCreated The List, Step by Step

head

val: 1 next val: 2 next val: 3 next val: 4 next

9



HowWeCreated The List, Step by Step

head

val: 1 next val: 2 next val: 3 next val: 4 next

9



HowWeCreated The List, Step by Step

head

val: 1 next val: 2 next val: 3 next val: 4 next

9



HowWeCreated The List, Step by Step

head

val: 1 next val: 2 next val: 3 next val: 4 next

9



HowWeCreated The List, Step by Step

head

val: 1 next val: 2 next val: 3 next val: 4 next

9



WeCanWrite a Function to Print the List Values

void printList(node_t *head);
We could do this either iteratively (with a loop), or recursively

10



Printing a Linked List Iteratively

void printList(node_t *head) {
node_t *current = head;
printf("list:");
while (current != NULL) {

printf(" %d", current->val);
current = current->next;

}
printf("\n");

}

11



First, Let’s Create aNodeDynamically

We don’t want to create every node ourselves

More importantly, we don’t want to name them and have memory issues

12



Code to Create aNodeDynamically

node_t *createNode(int val) {
node_t *node = malloc(sizeof(node_t));
if (node == NULL) {

exit(EXIT_FAILURE);
}
node->val = val;
node->next = NULL;
return node;

}

13



Now,Create a Function to Insert at the Front of the List

This function should create a new node with the value provided,
make its next pointer point to the current head,
make the new head point to the new node, and
return a pointer to the new node

The function prototype we’ll use is:
node_t *insertFront(node_t *head, int val);

14



Initial Attempt atWriting insertFront
node_t *insertFront(node_t *head, int val) {

node_t *node = createNode(val);
node->next = head;
head = node;
return node;

}

Why doesn’t this work?

15



It Doesn’tWork Because of Call byValue

int main(void) {
node_t *head = NULL;
insertFront(head, 4);
printList(head);
return EXIT_SUCCESS;

}

If we want the function to modify head then we should use &head

head actually represents the linked list, so we should make a struct for it

16



It Doesn’tWork Because of Call byValue

int main(void) {
node_t *head = NULL;
insertFront(head, 4);
printList(head);
return EXIT_SUCCESS;

}

If we want the function to modify head then we should use &head

head actually represents the linked list, so we should make a struct for it

16



Creating a struct for Our Linked List
typedef struct linked_list {

node_t *head;
} linked_list_t;

linked_list_t *createLinkedList() {
linked_list_t *linked_list = malloc(sizeof(linked_list_t));
if (linked_list == NULL) {

exit(EXIT_FAILURE);
}
linked_list->head = NULL;
return linked_list;

}

17



NowWeCan Re-Write insertFront
node_t *insertFront(linked_list_t *linked_list, int val) {

node_t *node = createNode(val);
node->next = linked_list->head;
linked_list->head = node;
return node;

}

18



WeNeed to Re-Write printListToo
void printList(linked_list_t *linked_list) {

node_t *current = linked_list->head;
printf("list:");
while (current != NULL) {

printf(" %d", current->val);
current = current->next;

}
printf("\n");

}

19



Now, Let’s Use Everything Together

int main(void) {
linked_list_t *linked_list = createLinkedList();
node_t *n4 = insertFront(linked_list, 4);
printList(linked_list);
free(n4);
free(linked_list);
return EXIT_SUCCESS;

}

20



Now,HowWeCreated the List Step by Step

head

val: 4 next

21



Now,HowWeCreated the List Step by Step

head

val: 4 next

21



Now,HowWeCreated the List Step by Step

head

val: 4 next

21



Let’s Check That AddingAnother NodeWorks

int main(void) {
linked_list_t *linked_list = createLinkedList();
node_t *n4 = insertFront(linked_list, 4);
node_t *n3 = insertFront(linked_list, 3);
printList(linked_list);
free(n3);
free(n4);
free(linked_list);
return EXIT_SUCCESS;

}

22



Inserting TwoNodes in the List, Step by Step

head

val: 4 next val: 3 next

23



Inserting TwoNodes in the List, Step by Step

head

val: 4 next val: 3 next

23



Inserting TwoNodes in the List, Step by Step

head

val: 4 next val: 3 next

23



Inserting TwoNodes in the List, Step by Step

head

val: 4 next val: 3 next

23



Inserting TwoNodes in the List, Step by Step

head

val: 4 next val: 3 next

23



Inserting TwoNodes in the List, Step by Step

head

val: 4 next val: 3 next

23



What Happens IfWeAccidentally Swap a Line of Code

node_t *insertFront(linked_list_t *linked_list, int val) {
node_t *node = createNode(val);
linked_list->head = node;
node->next = linked_list->head;
return node;

}

24



WhatWouldWeExpect to SeeNowwith the Lines Swapped?

int main(void) {
linked_list_t *linked_list = createLinkedList();
node_t *n4 = insertFront(linked_list, 4);
node_t *n3 = insertFront(linked_list, 3);
printList(linked_list);
free(n3);
free(n4);
free(linked_list);
return EXIT_SUCCESS;

}

An infinite loop!

25



WhatWouldWeExpect to SeeNowwith the Lines Swapped?

int main(void) {
linked_list_t *linked_list = createLinkedList();
node_t *n4 = insertFront(linked_list, 4);
node_t *n3 = insertFront(linked_list, 3);
printList(linked_list);
free(n3);
free(n4);
free(linked_list);
return EXIT_SUCCESS;

}

An infinite loop!

25



Incorrectly Adding TwoNodes into the List

head

val: 4 next val: 3 next

We also can’t access the node with the value 4 anymore!

26



Incorrectly Adding TwoNodes into the List

head

val: 4 next val: 3 next

We also can’t access the node with the value 4 anymore!

26



Incorrectly Adding TwoNodes into the List

head

val: 4 next val: 3 next

We also can’t access the node with the value 4 anymore!

26



Incorrectly Adding TwoNodes into the List

head

val: 4 next val: 3 next

We also can’t access the node with the value 4 anymore!

26



Incorrectly Adding TwoNodes into the List

head

val: 4 next val: 3 next

We also can’t access the node with the value 4 anymore!

26



Incorrectly Adding TwoNodes into the List

head

val: 4 next val: 3 next

We also can’t access the node with the value 4 anymore!

26



Incorrectly Adding TwoNodes into the List

head

val: 4 next val: 3 next

We also can’t access the node with the value 4 anymore!

26



ALinked List is Sequence of Nodes

To represent a linked list, we only need to keep track of the first node
Each node keeps track of the next node in the list

This allows some more flexibility over arrays in certain circumstances
We can update pointers instead of changing where values are in memory

27


