
Input/Output

2024 Winter APS 105 Computer Fundamentals
Jon Eyolfson

Lecture 3
1.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


WeWantOur Programs to Do Something!

ProgramInput Output

1



Re-visitingOur First Program
stdio.h is short for “standard input/output”
and contains the declaration of printf
the printf function outputs a string
(sequence of characters) to the terminal
Note: \n should always end a line

A string begins with a " followed by
any number of characters until
another " signifies the end
(you don’t see the double quotes)

#include <stdio.h>

int main(void) {
printf("Hello world\n");
return 0;

}

2



Re-visitingOur First Program
stdio.h is short for “standard input/output”
and contains the declaration of printf
the printf function outputs a string
(sequence of characters) to the terminal
Note: \n should always end a line

A string begins with a " followed by
any number of characters until
another " signifies the end
(you don’t see the double quotes)

#include <stdio.h>

int main(void) {
printf("Hello world\n");
return 0;

}

2



Re-visitingOur First Program
stdio.h is short for “standard input/output”
and contains the declaration of printf
the printf function outputs a string
(sequence of characters) to the terminal
Note: \n should always end a line

A string begins with a " followed by
any number of characters until
another " signifies the end
(you don’t see the double quotes)

#include <stdio.h>

int main(void) {
printf("Hello world\n");
return 0;

}

2



Re-visitingOur First Program
stdio.h is short for “standard input/output”
and contains the declaration of printf
the printf function outputs a string
(sequence of characters) to the terminal
Note: \n should always end a line

A string begins with a " followed by
any number of characters until
another " signifies the end
(you don’t see the double quotes)

#include <stdio.h>

int main(void) {
printf("Hello world\n");
return 0;

}

2



FunctionsCanTake Input and ProduceOutput

main is a function that takes no inputs (that’s what void means)
and produces an int value as output

For functions, we call the inputs to the function arguments
and they’re separated by commas if there’s more than one

printf takes a string argument (we’ll get to its type later) and returns
an int value of how many characters were shown in the terminal

printf also does the work to show characters in the terminal

Running a function is called a function call

3



FunctionsCanTake Input and ProduceOutput

main is a function that takes no inputs (that’s what void means)
and produces an int value as output

For functions, we call the inputs to the function arguments
and they’re separated by commas if there’s more than one

printf takes a string argument (we’ll get to its type later) and returns
an int value of how many characters were shown in the terminal

printf also does the work to show characters in the terminal

Running a function is called a function call

3



FunctionsCanTake Input and ProduceOutput

main is a function that takes no inputs (that’s what void means)
and produces an int value as output

For functions, we call the inputs to the function arguments
and they’re separated by commas if there’s more than one

printf takes a string argument (we’ll get to its type later) and returns
an int value of how many characters were shown in the terminal

printf also does the work to show characters in the terminal

Running a function is called a function call

3



FunctionsCanTake Input and ProduceOutput

main is a function that takes no inputs (that’s what void means)
and produces an int value as output

For functions, we call the inputs to the function arguments
and they’re separated by commas if there’s more than one

printf takes a string argument (we’ll get to its type later) and returns
an int value of how many characters were shown in the terminal

printf also does the work to show characters in the terminal

Running a function is called a function call

3



printfAcceptsMultiple Arguments

printf can now use the value 1
(the type of the value 1 is an int)

#include <stdio.h>

int main(void) {
printf("Hello world\n", 1);
return 0;

}

4



printfAcceptsMultiple Arguments

printf can now use the value 1
(the type of the value 1 is an int)

#include <stdio.h>

int main(void) {
printf("Hello world\n", 1);
return 0;

}

4



WeCanUse Format Strings to Print Values

"Integer: %d\n" will replace %d with the characters representing
the value of the first argument of printf after the format string
% is the escape character for a format specifier

Some format specifiers we’ll use:
%d an int
%lf is for a double
%c is for an char

If you want to print a literal %, you need to use %%

5



printfAcceptsMultiple Arguments

After running you’ll see
Integer: 1
in your terminal

Values are used in order

#include <stdio.h>

int main(void) {
printf("Integer: %d\n", 1);
return 0;

}

6



printfAcceptsMultiple Arguments

After running you’ll see
Integer: 1
in your terminal

Values are used in order

#include <stdio.h>

int main(void) {
printf("Integer: %d\n", 1);
return 0;

}

6



printfAcceptsMultiple Arguments

After running you’ll see
Integer: 1
in your terminal

Values are used in order

#include <stdio.h>

int main(void) {
printf("Integer: %d\n", 1);
return 0;

}

6



WeCanOutput Variables to the Terminal

After running you’ll see
Point: (1, 2)
in your terminal

#include <stdio.h>

int main(void) {
int x = 1;
int y = 2;
printf("Point: (%d, %d)\n", x, y);
return 0;

}

7



WeCanOutput Variables to the Terminal

After running you’ll see
Point: (1, 2)
in your terminal

#include <stdio.h>

int main(void) {
int x = 1;
int y = 2;
printf("Point: (%d, %d)\n", x, y);
return 0;

}

7



WeCanOutput Variables to the Terminal

After running you’ll see
Point: (1, 2)
in your terminal

#include <stdio.h>

int main(void) {
int x = 1;
int y = 2;
printf("Point: (%d, %d)\n", x, y);
return 0;

}

7



WeCanOutput Variables to the Terminal

After running you’ll see
Point: (1, 2)
in your terminal

#include <stdio.h>

int main(void) {
int x = 1;
int y = 2;
printf("Point: (%d, %d)\n", x, y);
return 0;

}

7



scanfAllowsYou toGet Input from the Terminal

scanf is the opposite of printf and also uses a format string
However, instead of using a value, it assigns a value

You need to use the starting memory address of the variable

512 004 512 005 512 006 512 007

Value of variable

In this case the variable would start at 512 004

Knowing the variable is an int means it requires 4 bytes

8



scanfAllowsYou toGet Input from the Terminal

scanf is the opposite of printf and also uses a format string
However, instead of using a value, it assigns a value

You need to use the starting memory address of the variable

512 004 512 005 512 006 512 007

Value of variable

In this case the variable would start at 512 004

Knowing the variable is an int means it requires 4 bytes

8



scanfAllowsYou toGet Input from the Terminal

scanf is the opposite of printf and also uses a format string
However, instead of using a value, it assigns a value

You need to use the starting memory address of the variable

512 004 512 005 512 006 512 007

Value of variable

In this case the variable would start at 512 004

Knowing the variable is an int means it requires 4 bytes

8



YouCanUse & to Get the StartingAddress of aVariable
Assume we have: int x;
& is a unary operator, e.g. &x
A unary operator means it only requires one operand
Note: addition, +, is a binary operator, e.g. 1 + 2

The result of & is a new value, with a new type
This type is the original type with a * at the end

The type of &x in this case is int* (more details later)

9



YouCanUse & to Get the StartingAddress of aVariable
Assume we have: int x;
& is a unary operator, e.g. &x
A unary operator means it only requires one operand
Note: addition, +, is a binary operator, e.g. 1 + 2

The result of & is a new value, with a new type
This type is the original type with a * at the end

The type of &x in this case is int* (more details later)

9



WeCanNowUseOur Terminal for Input andOutput

converts the characters we type
to an int value and assigns the
value to x using its address

#include <stdio.h>

int main(void) {
printf(" Input x: ");
int x;
scanf("%d", &x);
printf("Output x: %d\n", x);
return 0;

}

10



WeCanNowUseOur Terminal for Input andOutput

converts the characters we type
to an int value and assigns the
value to x using its address

#include <stdio.h>

int main(void) {
printf(" Input x: ");
int x;
scanf("%d", &x);
printf("Output x: %d\n", x);
return 0;

}

10



scanfReturns theNumber of ValuesAssigned
Note that the type of the arguments and the format specifiers should match
Otherwise you’ll get very unpredictable results

Sometimes it’s okay to use a different type for printf
printf("The integer value of 'A' is: %d\n", 'A');

11



WeCanCreateVariables That Can’t Change

We can declare a variable by adding a const keyword before the type
A keyword is a name reserved by C, which you can’t use

We could write: const int x = 1;
Now, we aren’t allowed to re-assign x

It’s good practice to add const to any variables that should never change

12



YouShould BeConsistentwithVariable Naming

Normal variable names should start with a lower case letter
Instead of a space, you should capitalize the next word

const variables should start with a capital letter

There’s some special values where every letter is capitalized
and words are separated by underscores

13



AConsistent Coding Style is Important

The C compiler ignores whitespace, so it’s just for us to read
There’s a formatter for you, but you should know the rules

Function definitions (like main) start at the beginning of a line

Every time you start a new set of curly brackets {
you need to indent the next lines

Every level of indention is 4 spaces (for now we’ll only have 1

14



AConsistent Coding Style is Important

The C compiler ignores whitespace, so it’s just for us to read
There’s a formatter for you, but you should know the rules

Function definitions (like main) start at the beginning of a line

Every time you start a new set of curly brackets {
you need to indent the next lines

Every level of indention is 4 spaces (for now we’ll only have 1

14



AConsistent Coding Style is Important

The C compiler ignores whitespace, so it’s just for us to read
There’s a formatter for you, but you should know the rules

Function definitions (like main) start at the beginning of a line

Every time you start a new set of curly brackets {
you need to indent the next lines

Every level of indention is 4 spaces (for now we’ll only have 1

14



Let’sWrite A Program toConvert Inches to CM

#include <stdio.h>

int main(void) {
const double InchesPerCM = 2.54;
double inches;
printf("Enter length (inches): ");
scanf("%lf", &inches);
double cm = inches * InchesPerCM;
printf("Converted length (cm): %lf\n", cm);
return 0;

}

Note: you can declare multiple variables of the same type by
separating each name with a comma, e.g. double inches, cm;

15



A doubleContainApproximately 16 Decimal Places
Format specifiers have sub-specifiers to change how to print the value

For numbers, after the starting % character, we can put a . followed
by a whole number to indicate the number of decimal places to print

Full list of sub-specifiers here: CPlusPlus.com

16

https://cplusplus.com/reference/cstdio/printf/


Let’s OnlyOutput 2 Decimal Places

#include <stdio.h>
#include <stdlib.h>

int main(void) {
const double InchesPerCM = 2.54;
double inches;
printf("Enter length (inches): ");
scanf("%lf", &inches);
double cm = inches * InchesPerCM;
printf("Converted length (cm): %.2lf\n", cm);
return EXIT_SUCCESS;

}

Note: it’s good practice not to use “magic values” like returning 0 from main
stdlib.h defines a EXIT_SUCCESS value to use instead if there’s no errors

17


