Sorting

2024 Winter APS 105: Computer Fundamentals Lecture 32
Jon Eyolfson 1.1.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License


http://creativecommons.org/licenses/by-sa/4.0/

Sorting is One of the Most Common Problems

Computers are very fast, and they don't care about the order of the data
However, programs almost always sort results to make it presentable

We'll discuss several sorting algorithms throughout the lecture



Sorting is One of the Most Common Problems

Computers are very fast, and they don't care about the order of the data
However, programs almost always sort results to make it presentable

We'll discuss several sorting algorithms throughout the lecture

An algorithm is just a set of steps to solve a problem



We May Need to Sort an Array

Given an array such as:
int array[] = {2, 5, 3, 13};

We want to write a function to sort the array in ascending order:
void (int array[], int arraylLength);
(lowest number first, followed by the next lowest, etc.)

After sorting, the elements of the array should be:
{1, 2, 3, 5}



Any Ideas How to Sort?

Remember, computers can only compare two elements at once

We can also swap two elements in an array (we wrote swap previously)



TheFirstldeaIs Called Bubble Sort
We can compare the first two elements (index 0 and 1) in the array
If the first element is larger than the second, we swap them
Now, compare the next two elements (index 1 and 2), swapping if needed

Repeat these steps until the end of the array
The idea is that the larger values go towards the end, in order



The Firstldeals Called Bubble Sort
We can compare the first two elements (index 0 and 1) in the array
If the first element is larger than the second, we swap them
Now, compare the next two elements (index 1 and 2), swapping if needed
Repeat these steps until the end of the array

The idea is that the larger values go towards the end, in order

Now the array is closer to being sorted, repeat the entire process again
until the array is sorted



Sorting an Array Using Bubble Sort

2 5 3 1
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 5 3 1
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 5 3 1
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 5 3 1
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 3 5 1
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 3 5 1
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 3 1 5
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 3 1 5
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 3 1 5
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 3 1 5
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 1 3 5
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 1 3 5
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 1 3 5
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

2 1 3 5
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

1 2 3 5
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

1 2 3 5
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

1 2 3 5
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

1 2 3 5
(el (1] (2] (3]



Sorting an Array Using Bubble Sort

1 2 3 5
(el (1] (2] (3]



Our Implementation of Bubble Sort

void (int array[], int arraylLength) {
bool swapped;
do {
swapped = false;
for (int i = 8; i < arraylength - 1; ++i) {
if (array[i] > array[i + 1]) {
swap(&array[i], &array[i + 1]);
swapped = true;

}

} while (swapped);



Why Don’t We Just Find the Smallest Number?

We could find the smallest number, and put it at the beginning of the array
Find the next smallest element in the rest of the array, that's the next element

Repeat this process until we've gone through all the elements



Why Don’t We Just Find the Smallest Number?

We could find the smallest number, and put it at the beginning of the array
Find the next smallest element in the rest of the array, that's the next element

Repeat this process until we've gone through all the elements

This algorithm is called selection sort



Sorting an Array Using Selection Sort

(el (1] (2] (3] (4] (5]



Sorting an Array Using Selection Sort

(el (1] (2] (3] (4] (5]

t f




Sorting an Array Using Selection Sort

(el (1] (2] (3] (4] (5]



Sorting an Array Using Selection Sort

(el (1] (2] (3] (4] (5]

t f




Sorting an Array Using Selection Sort

(el (1] (2] (3] (4] (5]



Sorting an Array Using Selection Sort

(el (1] (2] (3] (4] (5]

t f




Sorting an Array Using Selection Sort

(el (1] (2] (3] (4] (5]



Sorting an Array Using Selection Sort

(el (1] (2] (3] (4] (5]

t f




Sorting an Array Using Selection Sort

(el (1] (2] (3] (4] (5]



Sorting an Array Using Selection Sort

(el (1] (2] (3] (4] (5]

L f



Sorting an Array Using Selection Sort

(el (1] (2] (3] (4] (5]



Our Implementation of Selection Sort

void

(int array[], int arraylLength) {

for (int i = 8; i < arraylength - 1; ++i) {

int minIndex = i;
for (int j = i + 1; j < arraylength; ++j) {
if (array[j] < array[minIndex]) {
minIndex = j;
}
}

if (minIndex !'= i) {
swap(&array[i], &array[minIndex]);



We Divided the Array into Two Parts, Sorted and Unsorted

Can we think of another method of sorting that uses the same idea?
How would you sort playing cards in your hand if you had to break it down?

18



We Divided the Array into Two Parts, Sorted and Unsorted

Can we think of another method of sorting that uses the same idea?
How would you sort playing cards in your hand if you had to break it down?

You could keep sorted cards on the left, and the unsorted cards on the right,
take a card from the right, and put it in the correct position on the left

This algorithm is called insertion sort

18



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

?

I



Sorting an Array Using Insertion Sort

(e] (1] (2] (3] (4] (5]

I



Our Implementation of Insertion Sort

void (int array[], int arraylLength) {
for (int i = 1; i < arraylength; ++i) {
int element = array[i];
int j = 1;
while (j > 6 &% array[j - 1] > element) {
array[j] = array[j - 1];
-J;

}
if (j '=1) {
array[j] = element;

12



Computer Scientists Evaluate Runtime Using Big-O Notation

For performance, we care about how many operations an algorithm has to do

Big-O is the relationship is between the number of elements and operations,
it tells you how number of operations scales with the number of elements
(for large problems, we don't care about the constant values)

The sorting algorithms we implemented today are all O(n?)

13



For a Small Problem, The Differences Aren’t That Large

Operations

'y

O(n?)

O(logn)

o =

Elements

14



However, a Larger Problem Presents Issues

'y

Operations

aoghn)

Elements

15



Next Lecture We'll Explore Better Sorting Algorithms

However, today we implemented 3 sorting algorithms that get the job done
Bubble sort, Selection sort, and Insertion sort

16



