
Decision-Making

2024 Winter APS 105 Computer Fundamentals
Jon Eyolfson

Lecture 7
1.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

WeCanCompareCharacters

Recall: characters are encoded using ASCII
Encoded means converted into bytes

'0' < '1' < '2' < '3' < '4' < '5' < '6' < '7' < '8' < '9'
<
'A' < 'B' < 'C' < 'D' < 'E' < ... < 'W' < 'X' < 'Y' < 'Z'
<
'a' < 'b' < 'c' < 'd' < 'e' < ... 'w' < 'x' < 'y' < 'z'

1

WeCanUseArithmeticwith Characters

The characters '0' through '9' are sequential, the values increase by 1
Examples:

'0' + 2 '2'
'0' + 5 '5'

The characters 'A' through 'Z' are sequential as well as 'a' through 'z'
A upper case character + 32 results in the lower case of that character

Examples:
'A' + 2 'C'
'a' + 3 'd'
'o' - 1 'n'

2

WeCanUseArithmeticwith Characters

The characters '0' through '9' are sequential, the values increase by 1
Examples:

'0' + 2 '2'
'0' + 5 '5'

The characters 'A' through 'Z' are sequential as well as 'a' through 'z'
A upper case character + 32 results in the lower case of that character

Examples:
'A' + 2 'C'
'a' + 3 'd'
'o' - 1 'n'

2

Let’sWrite a Program to That Looks for a Letter

#include <stdio.h>
#include <stdlib.h>

int main(void) {
printf("Enter a character: ");
char c = '\0';
scanf("%c", &c);
if ((c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z')) {

printf("You entered a letter!\n");
}
else {

printf("You did not enter a letter!\n");
}
return EXIT_SUCCESS;

}

3

WeCould CreateVariables toMakeOur CodeMore Readable

#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>

int main(void) {
printf("Enter a character: ");
char c = '\0';
scanf("%c", &c);
bool isUppercaseLetter = c >= 'A' && c <= 'Z';
bool isLowercaseLetter = c >= 'a' && c <= 'z';
if (isUppercaseLetter || isLowercaseLetter) {

printf("You entered a letter!\n");
}
else {

printf("You did not enter a letter!\n");
}
return EXIT_SUCCESS;

}
4

TheCompiler Optimizes Logic Operators, Like “Or”

You may write: (complex condition 1 || (complex condition 2
In the case (complex condition 1 evaluates to true,
the compiler will not evaluate (complex condition 2
Evaluate is computing the result of an expression

Since the left-hand side of the || operator is true, the final result must true
The value of the right-hand side does not matter

5

TheCompiler Optimizes Logic Operators, Like “Or”

You may write: (complex condition 1 || (complex condition 2
In the case (complex condition 1 evaluates to true,
the compiler will not evaluate (complex condition 2
Evaluate is computing the result of an expression

Since the left-hand side of the || operator is true, the final result must true
The value of the right-hand side does not matter

5

TheCompiler AlsoOptimizes the “And” Logic Operator

We can do a similar optimization for the && operator

You may write: (complex condition 1 && (complex condition 2
In the case (complex condition 1 evaluates to false,
the compiler will not evaluate (complex condition 2
The compiler calls this lazy evaluation

Since the left-hand side of the && operator is false, the final result must false
The value of the right-hand side does not matter

6

TheCompiler AlsoOptimizes the “And” Logic Operator

We can do a similar optimization for the && operator

You may write: (complex condition 1 && (complex condition 2
In the case (complex condition 1 evaluates to false,
the compiler will not evaluate (complex condition 2
The compiler calls this lazy evaluation

Since the left-hand side of the && operator is false, the final result must false
The value of the right-hand side does not matter

6

TheCompiler AlsoOptimizes the “And” Logic Operator

We can do a similar optimization for the && operator

You may write: (complex condition 1 && (complex condition 2
In the case (complex condition 1 evaluates to false,
the compiler will not evaluate (complex condition 2
The compiler calls this lazy evaluation

Since the left-hand side of the && operator is false, the final result must false
The value of the right-hand side does not matter

6

WeCanRe-Write Logic Statements Using DeMorgan’s Laws

The laws state that:
!(A || B) == !A && !B
!(A && B) == !A || !B

If I wanted to only check for a character being not a letter, I might use:
(!(isUppercaseLetter || isLowercaseLetter))

I could re-write this as:
(!isUppercaseLetter && !isLowercaseLetter)

7

WeCanRe-Write Logic Statements Using DeMorgan’s Laws

The laws state that:
!(A || B) == !A && !B
!(A && B) == !A || !B

If I wanted to only check for a character being not a letter, I might use:
(!(isUppercaseLetter || isLowercaseLetter))

I could re-write this as:
(!isUppercaseLetter && !isLowercaseLetter)

7

WeCanRe-Write Logic Statements Using DeMorgan’s Laws

The laws state that:
!(A || B) == !A && !B
!(A && B) == !A || !B

If I wanted to only check for a character being not a letter, I might use:
(!(isUppercaseLetter || isLowercaseLetter))

I could re-write this as:
(!isUppercaseLetter && !isLowercaseLetter)

7

Beware: EnsureYouUse Brackets to GetWhat YouMean

What happens if I removed the brackets from:
(!(isUppercaseLetter || isLowercaseLetter))

So, I wrote this instead:
(!isUppercaseLetter || isLowercaseLetter)

Are these two expressions equivalent?

No, the second is the same as:
((!isUppercaseLetter) || isLowercaseLetter)

Remember, unary operators have higher precedence!

8

Beware: EnsureYouUse Brackets to GetWhat YouMean

What happens if I removed the brackets from:
(!(isUppercaseLetter || isLowercaseLetter))

So, I wrote this instead:
(!isUppercaseLetter || isLowercaseLetter)

Are these two expressions equivalent?

No, the second is the same as:
((!isUppercaseLetter) || isLowercaseLetter)

Remember, unary operators have higher precedence!

8

Beware: ; is a Statement
You may write something like:

if (isUppercaseLetter || isLowercaseLetter); {
printf("You entered a letter!\n");

}

When you run this, no matter what, it always prints you entered a letter

This is because ; by itself is an empty statement that does nothing
When the condition is true, it does nothing

We either do nothing then run printf, or jump to printf

9

Beware: ; is a Statement
You may write something like:

if (isUppercaseLetter || isLowercaseLetter); {
printf("You entered a letter!\n");

}

When you run this, no matter what, it always prints you entered a letter

This is because ; by itself is an empty statement that does nothing
When the condition is true, it does nothing

We either do nothing then run printf, or jump to printf

9

WeCanChain If Statements Together

You can write:
/* Start */
if (a) {

/* A */
/* This only runs if a is true. */

}
else if (b) {

/* B */
/* This only runs if a is false and b is true. */

}
/* End */

10

The Flowof the Previous Program

/* Start */

a

/* A */ b

/* B */

/* End */

true false

true
false

11

WeCanWrite Nested If Statements

if (a) {
if (b) {

/* Statements */
}

}

We can put an if statement inside an if statement
Each time we begin an if, we add another level of indentation

12

What Should Try to Be asConcise as Possible

Instead of writing:
if (a) {

if (b) {
/* Statements */

}
}

We should write:
if (a && b) {

/* Statements */
}

In general, the fewer levels of indentation you have, the easier it is to read

13

Let’sWrite a Program to Find theMaximumof 3 Integers

#include <stdio.h>
#include <stdlib.h>

int main(void) {
printf("Enter 3 integers: ");
int x = 0, y = 0, z = 0;
scanf("%d%d%d", &x, &y, &z);
/* TODO */
int max;
printf("Maximum: %d\n", max);
return EXIT_SUCCESS;

}

14

I’ll OnlyWrite theCodeAfter the scanf (to Save Space)
int main(void) {

int max;
if (x >= y) {

if (x >= z) { max = x; }
else { max = z; }

}
else if (y >= x) {

if (y >= z) { max = y; }
else { max = z; }

}
else {

max = z;
}
printf("Maximum: %d\n", max);
return EXIT_SUCCESS;

}

15

CanWeGet Rid of theNested Ifs?

The structure looks similar to:
if (a) {

if (b) {
/* Statements */

}
}

Except there’s an else, however all the else statements are the same

16

WeCanGet Rid of theNested Ifs

int main(void) {
int max;
if (x >= y && x >= z) {

max = x;
}
else if (y >= x && y >= z) {

max = y;
}
else {

max = z;
}
printf("Maximum: %d\n", max);
return EXIT_SUCCESS;

}

17

In Fact,WeCanGet Rid of the else
#include <stdio.h>
#include <stdlib.h>

int main(void) {
printf("Enter 3 integers: ");
int x = 0, y = 0, z = 0;
scanf("%d%d%d", &x, &y, &z);
int max = z;
if (x >= y && x >= z) {

max = x;
}
else if (y >= x && y >= z) {

max = y;
}
printf("Maximum: %d\n", max);
return EXIT_SUCCESS;

}
18

