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WeCanCompareCharacters

Recall: characters are encoded using ASCII
Encoded means converted into bytes

'0' < '1' < '2' < '3' < '4' < '5' < '6' < '7' < '8' < '9'
<
'A' < 'B' < 'C' < 'D' < 'E' < ... < 'W' < 'X' < 'Y' < 'Z'
<
'a' < 'b' < 'c' < 'd' < 'e' < ... 'w' < 'x' < 'y' < 'z'
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WeCanUseArithmeticwith Characters

The characters '0' through '9' are sequential, the values increase by 1
Examples:

'0' + 2 '2'
'0' + 5 '5'

The characters 'A' through 'Z' are sequential as well as 'a' through 'z'
A upper case character + 32 results in the lower case of that character

Examples:
'A' + 2 'C'
'a' + 3 'd'
'o' - 1 'n'
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Let’sWrite a Program to That Looks for a Letter

#include <stdio.h>
#include <stdlib.h>

int main(void) {
printf("Enter a character: ");
char c = '\0';
scanf("%c", &c);
if ((c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z')) {

printf("You entered a letter!\n");
}
else {

printf("You did not enter a letter!\n");
}
return EXIT_SUCCESS;

}
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WeCould CreateVariables toMakeOur CodeMore Readable

#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>

int main(void) {
printf("Enter a character: ");
char c = '\0';
scanf("%c", &c);
bool isUppercaseLetter = c >= 'A' && c <= 'Z';
bool isLowercaseLetter = c >= 'a' && c <= 'z';
if (isUppercaseLetter || isLowercaseLetter) {

printf("You entered a letter!\n");
}
else {

printf("You did not enter a letter!\n");
}
return EXIT_SUCCESS;

}
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TheCompiler Optimizes Logic Operators, Like “Or”

You may write: (complex condition 1 || (complex condition 2
In the case (complex condition 1 evaluates to true,
the compiler will not evaluate (complex condition 2
Evaluate is computing the result of an expression

Since the left-hand side of the || operator is true, the final result must true
The value of the right-hand side does not matter
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TheCompiler AlsoOptimizes the “And” Logic Operator

We can do a similar optimization for the && operator

You may write: (complex condition 1 && (complex condition 2
In the case (complex condition 1 evaluates to false,
the compiler will not evaluate (complex condition 2
The compiler calls this lazy evaluation

Since the left-hand side of the && operator is false, the final result must false
The value of the right-hand side does not matter
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WeCanRe-Write Logic Statements Using DeMorgan’s Laws

The laws state that:
!(A || B) == !A && !B
!(A && B) == !A || !B

If I wanted to only check for a character being not a letter, I might use:
(!(isUppercaseLetter || isLowercaseLetter))

I could re-write this as:
(!isUppercaseLetter && !isLowercaseLetter)
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Beware: EnsureYouUse Brackets to GetWhat YouMean

What happens if I removed the brackets from:
(!(isUppercaseLetter || isLowercaseLetter))

So, I wrote this instead:
(!isUppercaseLetter || isLowercaseLetter)

Are these two expressions equivalent?

No, the second is the same as:
((!isUppercaseLetter) || isLowercaseLetter)

Remember, unary operators have higher precedence!
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Beware: ; is a Statement
You may write something like:

if (isUppercaseLetter || isLowercaseLetter); {
printf("You entered a letter!\n");

}

When you run this, no matter what, it always prints you entered a letter

This is because ; by itself is an empty statement that does nothing
When the condition is true, it does nothing

We either do nothing then run printf, or jump to printf

9



Beware: ; is a Statement
You may write something like:

if (isUppercaseLetter || isLowercaseLetter); {
printf("You entered a letter!\n");

}

When you run this, no matter what, it always prints you entered a letter

This is because ; by itself is an empty statement that does nothing
When the condition is true, it does nothing

We either do nothing then run printf, or jump to printf

9



WeCanChain If Statements Together

You can write:
/* Start */
if (a) {

/* A */
/* This only runs if a is true. */

}
else if (b) {

/* B */
/* This only runs if a is false and b is true. */

}
/* End */
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The Flowof the Previous Program

/* Start */

a

/* A */ b

/* B */

/* End */

true false

true
false
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WeCanWrite Nested If Statements

if (a) {
if (b) {

/* Statements */
}

}

We can put an if statement inside an if statement
Each time we begin an if, we add another level of indentation
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What Should Try to Be asConcise as Possible

Instead of writing:
if (a) {

if (b) {
/* Statements */

}
}

We should write:
if (a && b) {

/* Statements */
}

In general, the fewer levels of indentation you have, the easier it is to read
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Let’sWrite a Program to Find theMaximumof 3 Integers

#include <stdio.h>
#include <stdlib.h>

int main(void) {
printf("Enter 3 integers: ");
int x = 0, y = 0, z = 0;
scanf("%d%d%d", &x, &y, &z);
/* TODO */
int max;
printf("Maximum: %d\n", max);
return EXIT_SUCCESS;

}
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I’ll OnlyWrite theCodeAfter the scanf (to Save Space)
int main(void) {

int max;
if (x >= y) {

if (x >= z) { max = x; }
else { max = z; }

}
else if (y >= x) {

if (y >= z) { max = y; }
else { max = z; }

}
else {

max = z;
}
printf("Maximum: %d\n", max);
return EXIT_SUCCESS;

}
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CanWeGet Rid of theNested Ifs?

The structure looks similar to:
if (a) {

if (b) {
/* Statements */

}
}

Except there’s an else, however all the else statements are the same
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WeCanGet Rid of theNested Ifs

int main(void) {
int max;
if (x >= y && x >= z) {

max = x;
}
else if (y >= x && y >= z) {

max = y;
}
else {

max = z;
}
printf("Maximum: %d\n", max);
return EXIT_SUCCESS;

}
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In Fact,WeCanGet Rid of the else
#include <stdio.h>
#include <stdlib.h>

int main(void) {
printf("Enter 3 integers: ");
int x = 0, y = 0, z = 0;
scanf("%d%d%d", &x, &y, &z);
int max = z;
if (x >= y && x >= z) {

max = x;
}
else if (y >= x && y >= z) {

max = y;
}
printf("Maximum: %d\n", max);
return EXIT_SUCCESS;

}
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