Decision-Making

2024 Winter APS 105: Computer Fundamentals Lecture 7
Jon Eyolfson 1.8.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

We Can Compare Characters

Recall: characters are encoded using ASCII
Encoded means converted into bytes

Igl < I'II < I2I < |3I < I4| < |5I < Iél < l7| < I8I < I9I
<

IAI < IBI < ICI < lDI < IEI < .. < IWI < IXI < IYI < IZI
<

Ial < lbl < ICI < ldl < Iel < .. IWI < IXI < Iyl <

z

We Can Use Arithmetic with Characters

The characters '0' through '9' are sequential, the values increase by 1
Examples:

lel + 2 I2I

IBI + 5 I5I

We Can Use Arithmetic with Characters

The characters '0' through '9' are sequential, the values increase by 1

Examples:
lel + 2 I2I
IBI + 5 I5I

The characters 'A' through 'Z' are sequential as well as 'a' through 'z’
A upper case character + 32 results in the lower case of that character

Examples:
|AI + 2 ICI
|al + 3 Idl

o' -1 n'

Let’s Write a Program to That Looks for a Letter

#include <stdio.h>
#include <stdlib.h>

int (void) {
printf("Enter a character: ");
char ¢ = '\@';
scanf("%c", &c);
if ((c>="A" 8& c<="72") || (e > 'a' && c <= '2")) {
printf("You entered a letter!\n");

else {
printf("You did not enter a letter!\n");

3
return EXIT_SUCCESS;

We Could Create Variables to Make Our Code More Readable

#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>

int (void) {
printf("Enter a character: ");
char ¢ = '\@';
scanf("%c", &c);
bool isUppercaselLetter = ¢ >= 'A' && ¢ <= '7';
bool islowercaselLetter = ¢ >= 'a' && ¢ <= 'z';
if (isUppercaseletter || isLowercaseletter) {

printf("You entered a letter!\n");

else {
printf("You did not enter a letter!\n");

3
return EXIT_SUCCESS;

The Compiler Optimizes Logic Operators, Like “Or”

You may write: (complex condition 1) || (complex condition 2)

In the case (complex condition 1) evaluates to true,
the compiler will not evaluate (complex condition 2)
Evaluate is computing the result of an expression

The Compiler Optimizes Logic Operators, Like “Or”

You may write: (complex condition 1) || (complex condition 2)

In the case (complex condition 1) evaluates to true,
the compiler will not evaluate (complex condition 2)
Evaluate is computing the result of an expression

Since the left-hand side of the || operator is true, the final result must true
The value of the right-hand side does not matter

The Compiler Also Optimizes the “And” Logic Operator

We can do a similar optimization for the && operator

The Compiler Also Optimizes the “And” Logic Operator
We can do a similar optimization for the && operator

You may write: (complex condition 1) & (complex condition 2)

In the case (complex condition 1) evaluates to false,
the compiler will not evaluate (complex condition 2)
The compiler calls this lazy evaluation

The Compiler Also Optimizes the “And” Logic Operator
We can do a similar optimization for the && operator

You may write: (complex condition 1) & (complex condition 2)

In the case (complex condition 1) evaluates to false,
the compiler will not evaluate (complex condition 2)
The compiler calls this lazy evaluation

Since the left-hand side of the && operator is false, the final result must false
The value of the right-hand side does not matter

We Can Re-Write Logic Statements Using De Morgan’s Laws

The laws state that:

I(A[] B) == 'A && !B
I(A&& B) == 'A || !B

We Can Re-Write Logic Statements Using De Morgan’s Laws

The laws state that:

I(A || B) == A && !B
I(A&& B) == 'A || !B

If | wanted to only check for a character being not a letter, | might use:
(!(isUppercaseletter || isLowercaseletter))

We Can Re-Write Logic Statements Using De Morgan’s Laws

The laws state that:

I(A || B) == A && !B
I(A&& B) == 'A || !B

If | wanted to only check for a character being not a letter, | might use:
(!(isUppercaseletter || isLowercaseletter))

| could re-write this as:
('isUppercaseletter && !isLowercaseletter)

Beware: Ensure You Use Brackets to Get What You Mean

What happens if | removed the brackets from:
(!(isUppercaseletter || isLowercaseletter))

So, | wrote this instead:
(lisUppercaseletter || isLowercaseletter)

Are these two expressions equivalent?

Beware: Ensure You Use Brackets to Get What You Mean

What happens if | removed the brackets from:
(!(isUppercaseletter || isLowercaseletter))

So, | wrote this instead:
(lisUppercaseletter || isLowercaseletter)

Are these two expressions equivalent?

No, the second is the same as:
(('isUppercaseletter) || isLowercaseletter)

Remember, unary operators have higher precedence!

Beware: ; is a Statement
You may write something like:

if (isUppercaseletter || isLowercaseletter); {
printf("You entered a letter!\n");
}

When you run this, no matter what, it always prints you entered a letter

Beware: ; is a Statement

You may write something like:

if (isUppercaseletter || isLowercaseletter); {
printf("You entered a letter!\n");
}

When you run this, no matter what, it always prints you entered a letter

This is because ; by itself is an empty statement that does nothing
When the condition is true, it does nothing

We either do nothing then run printf, or jump to printf

We Can Chain If Statements Together

You can write:

if (a) {

}
else if (b) {

18

The Flow of the Previous Program

true false

true
false

I

We Can Write Nested If Statements

if (a) {
if (b) {
3

}

We can put an if statement inside an if statement
Each time we begin an if, we add another level of indentation

12

What Should Try to Be as Concise as Possible

Instead of writing:

if (a) {
if (b) {

}
}

We should write:
if (a && b) {

}

In general, the fewer levels of indentation you have, the easier it is to read

13

Let’s Write a Program to Find the Maximum of 3 Integers

#include <stdio.h>
#include <stdlib.h>

int (void) §
printf("Enter 3 integers: ");
int x =0, y=20, z=0;
scanf("%d%d%d", &x, &y, &z);

int max;
printf("Maximum: %d\n", max);
return EXIT_SUCCESS;

14

I'll Only Write the Code After the (to Save Space)

int (void) §

int max;
if (x >=y) {
if (x >=z) { max = x; }
else {max = z; }
}
else if (y >= x) {
if (y>=2z) {max = y; }
else {max = z; }
}
else {
max = z;
}

printf("Maximum: %d\n", max);
return EXIT_SUCCESS;

Can We Get Rid of the Nested Ifs?

The structure looks similar to:

if (a) {
if (b) {
}

}

Except there's an else, however all the else statements are the same

16

We Can Get Rid of the Nested Ifs

int

(void) §

int max;

if (x >=y && x >= z) {
max = X;

}

else if (y >= x & y >= z) {
max = y;

}

else {
max = z;

}

printf("Maximum: %d\n", max);
return EXIT_SUCCESS;

17

In Fact, We Can Get Rid of the else

#include <stdio.h>
#include <stdlib.h>

int

(void) {
printf("Enter 3 integers: ");
int x =0, y=286, z=0;
scanf("%d%d%d", &, &y, &z);
int max = z;
if (x >=y && x >=2z) {

max = X;

}

else if (y >= x & y >= z) {
max = y;

}

printf("Maximum: %d\n", max);
return EXIT_SUCCESS;

18

