
Lecture 31 1.0.0
2023 Fall ECE 344: Operating Systems

MemoryAllocation

Jon Eyolfson
2023 Fall

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba

http://creativecommons.org/licenses/by-sa/4.0/


Static Allocation is the Simplest Strategy

Create a fixed size allocation in your program
e.g. char buffer[4096];

When the program loads, the kernel sets aside that memory for you

That memory exists as long as your process does, no need to free

1



Dynamic Allocation is Often Required

You may only conditionally require memory
Static allocations are sometimes wasteful

You may not know the size of the allocation
Static allocations need to account for the maximum size

Where do you allocate memory?
You can either allocate on the stack or on the heap

2



Stack Allocation is Mostly Done for You in C

Think of normal variables
e.g. int x;

The compiler internally inserts alloca calls
e.g. int *px = (int*) alloca(4);

Whenever the function that called alloca returns, it frees all the memory
This just restores the previous stack pointer

This won’t work if you try to use the memory after returning

3



You’ve Used Dynamic Allocation Before

These are the malloc family of functions

The most flexible way to use memory, but is also the most difficult to get right

You have to properly handle your memory lifetimes, and free exactly once

Also, there’s a new concern — fragmentation

4



Fragmentation is a Unique Issue for Dynamic Allocation

You allocate memory in different sized contiguous blocks
Compaction is not possible and every allocation decision is permanent

A fragment is a small contiguous block of memory that cannot handle an allocation
You can think of it as a “hole” in memory, wasting space

There are 3 requirements for fragmentation
1. Different allocation lifetimes
2. Different allocation sizes
3. Inability to relocate previous allocations

5



There’s Internal and External Fragmentation

External fragmentation occurs when you allocate different sized blocks
There’s no room for an allocation between the blocks

Internal fragmentation occurs when you allocate fixed sized blocks
There’s wasted space within a block

Credit: Daniel Ritz

6

https://git.scc.kit.edu/uurqi/os-tutorium


WeWant toMinimize Fragmentation

Fragmentation is just wasted space, which we should prevent

We want to reduce the number of “holes” between blocks of memory
If we have holes, we’d like to keep them as large as possible

Our goal is to keep allocating memory without wasting space

7



Allocator Implementations Usually Use a Free List

They keep track of free blocks of memory by chaining them together
Implemented with a linked list

We need to be able to handle a request of any size

For allocation, we choose a block large enough for the request
Remove it from the free list

For deallocation, we add the block back to the free list
If it’s adjacent to another free block, we can merge them

8



There are 3 General Heap Allocation Strategies

Best fit: choose the smallest block that can satisfy the request
Needs to search through the whole list (unless there’s an exact match)

Worst fit: choose largest block (most leftover space)
Also has to search through the list

First fit: choose first block that can satisfy request

9



Allocating Using Best Fit (1)

Note that blocks with a blank background and a number are free

100 60

40

Where do we allocate this block?

10



Allocating Using Best Fit (2)

100 20

60

Where do we allocate this block?

11



Allocating Using Best Fit (3)

40 20

60

The next block does not fit anywhere

12



Allocating UsingWorst Fit (1)

100 60

40

Where do we allocate this block?

13



Allocating UsingWorst Fit (2)

60 60

60

Where do we allocate this block?

14



Allocating UsingWorst Fit (3)

60

60

Next block fits exactly in remaining space

15



Best Fit andWorst Fit are Both Slow

Best fit: tends to leave very large holes and very small holes
Small holes may be useless

Worst fit: simulation says it’s the worst in terms of storage utilization

First fit: tends to leave “average” size holes

16



The Kernel Has To Implement It’s OwnMemory Allocations

The concepts are the same for user space memory allocation
(the kernel just gives them more contiguous virtual memory pages):
• There’s static and dynamic allocations
• For dynamic allocations, fragmentation is a big concern
• Dynamic allocation returns blocks of memory

• Fragmentation between blocks is external
• Fragmentation within a blocks is internal

• There’s 3 general allocation strategies for different sized allocations
• Best fit
• Worst fit
• First fit

17


