
Lecture 4 1.0.3
2023 Fall ECE 344: Operating Systems

Process Creation

Jon Eyolfson
2023 Fall

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba

http://creativecommons.org/licenses/by-sa/4.0/


Recall: A Process is an Instance of a Running Program

1



WeCanAddMore to a Process

2



A Process Control Block (PCB) Contains All Information

Specifically, in Linux, this is the task_struct you can browse on GitHub

It contains:
• Process state
• CPU registers
• Scheduling information
• Memory management information
• I/O status information
• Any other type of accounting information

Each process gets a unique process ID (pid) to keep track of it

3

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L743


Process State Diagram (You Could RenameWaiting to Ready)

Createdstart Waiting

Running

Blocked

Terminated

4



You Can Read Process State Using the “proc” Filesystem

There’s a standard /proc directory (on Linux) that represents the kernel’s state
These aren’t real files, they just look like it!

Every directory that’s a number (process ID) in /proc represents a process

There’s a file called status that contains the state (used for Lab 1)

5



WeCould Create Processes from Scratch

We load the program into memory and create the process control block

This is what Windows does

Unix decomposes process creation into more flexible abstractions

6



Instead of Creating a New Process,WeCould Clone It

Pause the currently running process, and copy it’s PCB into a new one
This will reuse all of the information from the process, including variables!

Distinguish between the two processes with a parent and child relationship
They could both execute different parts of the program together

We could then allow either process to load a new program and setup a new PCB

7



forkCreates a New Process, A Copy of the Current One

int fork(void) as the following API:
• Returns the process ID of the newly created child process

-1: on failure
0: in the child process
>0: in the parent process

There are now 2 processes running
Note: they can access the same variables, but they’re separate

Operating system does “copy on write” to maximize sharing

8



On POSIX Systems, You Can Find Documentation Using man

We’ll be using the following APIs:
• fork
• execve
• wait (next lecture)

You can use man <function> to look up documentation,
or man <number> <function>

2: System calls
3: Library calls

9



fork-example.cHas One Process Execute Each Branch
int main(int argc, char *argv[]) {

pid_t returned_pid = fork();
if (retured_pid ⿂⿻ -1) {
int err = errno;
perror("fork failed");
return err;

}
if (returned_pid ⿂⿻ 0) {
printf("Child returned pid: %d\n", returned_pid);
printf("Child pid: %d\n", getpid());
printf("Child parent pid: %d\n", getppid());

}
else {
printf("Parent returned pid: %d\n", returned_pid);
printf("Parent pid: %d\n", getpid());
printf("Parent parent pid: %d\n", getppid());

}
return 0;

}10



execve Replaces the Processwith Another Program, and
Resets

execve has the following API:

• pathname: Full path of the program to load
• argv: Array of strings (array of characters), terminated by a null pointer

Represents arguments to the process
• envp: Same as argv

Represents the environment of the process
• Returns an error on failure, does not return if successful

11



execve-example.c Turns the Process into ls

int main(int argc, char *argv[]) {
printf("I'm going to become another process\n");
char *exec_argv[] = {"ls", NULL};
char *exec_envp[] = {NULL};
int exec_return = execve("/usr/bin/ls", exec_argv, exec_envp);
if (exec_return ⿂⿻ -1) {
exec_return = errno;
perror("execve failed");
return exec_return;

}
printf("If execve worked, this will never print\n");
return 0;

}

12



The Operating SystemCreates Processes

The operating system has to:
• Maintain process control blocks, including state
• Create new processes
• Load a program, and re-initialize a process with context

13


