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Functions

int fork();

Creates a new process that’s a clone of the currently running process. In the original process, it

returns the process ID (pid) of the newly created child process. In the child process it returns 0.

int execlp(const char *file, const char *arg, ...);

Replaces the current process with a new program specified by file. The new process is given the

command-line arguments specified by arg and any additional arguments. Returns only if there is

an error.

int dup2(int oldfd, int newfd);

Duplicates the file descriptor oldfd to newfd. If newfd is already open, it is first closed. Returns the

new file descriptor on success.

int waitpid(pid_t pid, int *status, int options);

Waits for a specific child process (pid) to change state. The state change is stored in status. The

options argument can modify the behavior of waitpid, use 0 for the defaults (blocking). Returns

the pid of the child process on success.

int pipe(int pipefd[2]);

Creates a unidirectional data channel. pipefd[0] is set up for reading, and pipefd[1] is set up for

writing. Returns 0 on success.

void exit(int status);

Terminates the calling process with an exit status of status.

ssize_t write(int fd, const void *buf, size_t count);

Writes count bytes from buf to the file or device associated with fd. Returns the number of bytes

written.

ssize_t read(int fd, void *buf, size_t count);

Reads up to count bytes from the file or socket associated with fd into buf. Returns the number of

bytes read.

int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine)(void *),

void *arg);

Creates a new thread with attributes specified by attr. The new thread starts execution by invok-

ing start_routine with arg as its argument. Returns 0 on success.

void pthread_exit(void *retval);

Terminates the calling thread, returning retval to any joining thread.

int pthread_join(pthread_t thread, void **retval);

Waits for the thread specified by thread to terminate. The thread’s return value is stored in retval.

Returns 0 on success.

int pthread_detach(pthread_t thread);

Detaches the specified thread, so that its resources can be reclaimed immediately upon termina-

tion. Returns 0 on success.



int pthread_mutex_lock(pthread_mutex_t *mutex);

Locks the specified mutex. If the mutex is already locked, the calling thread is blocked until the

mutex becomes available. Returns 0 on success.

int pthread_mutex_trylock(pthread_mutex_t *mutex);

Attempts to lock the specified mutex. The function returns immediately, regardless of the mutex

state. Returns 0 if the lock was acquired successfully, and a non-zero error code if it was not

(e.g., already locked).

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Unlocks the specified mutex. The mutex must be locked by the calling thread. Returns 0 on

success.

int sem_wait(sem_t *sem);

Decreases the semaphore count. If the semaphore’s value is zero, the calling process is blocked

until the semaphore value is greater than zero. Returns 0 on success.

int sem_post(sem_t *sem);

Increases the semaphore count. If there are any processes or threads waiting on the semaphore,

this operation wakes one of them. Returns 0 on success.

int sem_trywait(sem_t *sem);

Similar to sem_wait, but returns immediately if the decrement cannot be immediately performed

(i.e., the semaphore value is zero). Returns 0 if the semaphore was successfully decremented,

otherwise returns a non-zero error code.

int pthread_cond_signal(pthread_cond_t *cond);

Unblocks at least one of the threads that are blocked on the specified condition variable cond.

Returns 0 on success.

int pthread_cond_broadcast(pthread_cond_t *cond);

Unblocks all threads currently blocked on the specified condition variable cond. Returns 0 on

success.

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

Blocks the calling thread on the condition variable cond. The thread remains blocked until another

thread signals cond with pthread_cond_signal or pthread_cond_broadcast. The mutex is assumed to

be locked by the calling thread on entrance to pthread_cond_wait. Before returning to the calling

thread, pthread_cond_wait re-acquires mutex. Returns 0 on success.

pid_t getpid(void);

Returns the process ID (PID) of the calling process. This value can be used to uniquely identify

the process within the system.

int sched_yield(void);

Causes the calling thread to relinquish the CPU. The thread is moved to the end of the queue and

a new thread gets to run. Returns 0 on success.



Short Answer (25 marks total)

Q1 (1 marks). What tool should you use to determine what system calls a process makes?

strace

Q2 (2 marks). Describe a benefit of using a library function call versus a system call.

A library function call is fast, a system call requires switching from user space to kernel space that

requires significant overhead.

Q3 (2 marks). Are new process ID (PID) numbers always larger than older running processes?

No, when a process is terminated, its PID is put back into a pool. The kernel will use the pool of

PID numbers or generate a new number if none are available from the pool.

Q4 (2 marks). Briefly describe the role of the TLB.

The TLB is a cache for the PTE lookups of virtual pages.

Q5 (2 marks). Name two different mechanisms for IPC (inter-process communication).

Pipes, files, sockets, signals, shared memory

Q6 (2 marks). What is one type of information stored in a ucontext_t?

The register state (the value of all the registers), the next context to switch to if the run function

returns, and stack information (base address and size).

Q7 (2 marks). Name two goals of CPU scheduling that can be in conflict.

Fairness and average waiting time.

Q8 (3 marks). Why might you prefer to use containers (e.g., Docker) over virtual machines to distribute an

application?

For virtual machines, you’d have to distribute a kernel with your application, which would waste a

lot of space. Containers share the host kernel while providing isolation, like with a virtual machine.

They’d also be much faster to start, as they do not require booting a kernel.



Q9 (4 marks). What is a journaling file system, and provide an example of an issue it prevents.

A journaling file system records updates in a log (journal) before applying them to the main file

system. This ensures that, in the event of a crash or power failure, the system can recover to a

consistent state by replaying the log.

For instance, for deleting a file, you may have removed the entry in the directory, released the

inode to the pool of free nodes, and then crashed. In this scenario, the data blocks would not be

released. A journal would know that this operation is not complete during the next power on and

go back to free the data blocks, ensuring a consistent state.

Q10 (5marks). Using a buddy allocator managing 4096 bytes, we receive allocation requests in the following

order: 2048 bytes, 512 bytes, and 1536 bytes. Describe what happens during these allocations, including

the free lists after each successful allocation. Would a general heap allocator behave differently?

• 2048 bytes: The allocator splits the 4096 byte block into two 2048 byte blocks. One block

is allocated, leaving one free entry in the 2048 byte list.

• 512 bytes: The remaining 2048 byte free block is split into two 1024 byte blocks. One 1024

byte block is further split into two 512 byte blocks. One 512 byte block is allocated, leaving

the other free. After, we have one free entry in the 1024 byte list and one free entry in the 512

byte list.

• 1536 bytes: This allocation would be rounded up to 2048 bytes. There is no 2048 byte, or

greater, block free, therefore the allocation would fail.

In this scenario, the general heap allocator would be able to successfully use all the space fulfill

every allocation request.



Processes (18 marks total)

Consider the following code, assuming that all system call are always successful, running under process ID

(pid) 100:

1 int main(void) {

2 /* Allocate a LOT of memory. */

3 int x = 4;

4 int pid = fork(); /* (A) */

5 if (pid > 0) {

6 waitpid(pid, NULL, 0);

7 printf("x = %d\n", x);

8 }

9 else {

10 x = 6;

11 pid = fork();

12 if (pid > 0) {

13 exit(0);

14 }

15 }

16 printf("x = %d\n", x);

17 return 0;

18 }

Q11 (2 marks). How many new processes get created?

2.

Q12 (2 marks). Draw the process tree of parent/child relationships, showing the process IDs they will likely

get.

PID 100

PID 101

PID 102

Q13 (4 marks). Provide a possible sequence of outputs from the provided code.

x = 6

x = 4

x = 4



Q14 (6 marks).

For every process created from running PID 100, state whether it will always, maybe, or never be a zombie or

an orphan (one answer for each) when PID 100 terminates. Briefly justify your reasoning. Use the following

format for your answers:

PID 101:

Zombie: Answer (Always/Maybe/Never). Justification.

Orphan: Answer (Always/Maybe/Never). Justification.

PID 101:

Zombie: Never. Since PID 100 explicitly waits for PID 101, it’ll be cleaned up before PID 100 ter-

minates.

Orphan: Never. PID 100 explicitly waits for PID 101 immediately after its creation, ensuring it is

always acknowledged.

PID 102:

Zombie: Maybe. PID 102 could finish before PID 100. The opposite may also happen.

Orphan: Always. PID 100 only continues from line 6 after PID 101 terminates. PID 102 will always

have to be re-parented. We’d also accept “Maybe” if it’s clear it has to be re-parented.

Q15 (4 marks). Assume that before line 4 (also shown with the /* (A) */ comment) the process uses 1

GiB (2
30
) of memory. How can the kernel quickly create a “copy” of this memory during a fork without

actually duplicating 1 GiB of data? What independent structures must the kernel create for the new process?

Describe the implementation, including the kernel’s actions to support virtual memory and how the new

process’s virtual memory relates to the physical memory.

The kernel would implement copy-on-write. The new process would need independent page

tables and PTEs. The new process’ PTEs would point to the same physical memory as the original

process. As soon as either process actually modified memory, the kernel would make a new copy

then.



Threads (22 points total)

Consider the following code:

1 void* run1(void*) {

2 printf("r1 from %d\n", getpid());

3 return NULL;

4 }

5

6 void* run2(void*) {

7 printf("r2 from %d\n", getpid());

8 return NULL;

9 }

10

11 int main(void) {

12 pthread_t t1;

13 pthread_create(&t1, NULL, run1, NULL);

14 pthread_detach(t1);

15 fork();

16 pthread_t t2;

17 pthread_create(&t2, NULL, run2, NULL);

18 pthread_detach(t2);

19 printf("main from %d\n", getpid());

20 pthread_exit(NULL);

21 return 0;

Assume we run this program as process pid = 100, and all system calls are successful.

Q16 (2 marks). How many threads are created in total only from calls to pthread_create?

3.

For the following questions assume that printf does not use a global buffer, i.e. every printf call immediately

does a write system call.

Q17 (3 marks).

How many lines will the program print when run? Provide only the total number of lines printed for each

possible execution.

This program will always print 5 lines when run.

Q18 (3 marks). Describe any ordering between the printed lines.

This is no ordering between any lines.

Q19 (4 marks). Show a possible outcome of running this program.

r1 from 100

main from 100

r2 from 100

main from 101

r2 from 101



Q20 (3 marks). If we remove pthread_exit, how many lines will the program print when run? Provide only

the total number of lines printed for each possible execution.

This program will print any number between 2 and 5 lines when run.

Q21 (3marks). For this question assume that we used user threads instead of kernel threads (from pthread)

for the original code listing with pthread_exit. Show a possible outcome of running this program that isn’t

possible with kernel threads. If it’s not possible to get a different outcome, briefly explain why.

r1 from 100

r1 from 101

main from 100

r2 from 100

main from 101

r2 from 101

Q22 (4 marks). For this question, assume the original code using kernel threads again. The only difference

is that now printf uses a global buffer. Assume that printf only does a single write system call printing all

lines just before the process exits. Show a possible outcome of running this program that isn’t possible with

the non-buffering printf function. If it’s not possible to get a different outcome, briefly explain why.

r1 from 100

main from 100

r2 from 100

r1 from 100

main from 101

r2 from 101

It’s possible that r1 runs before the fork, filling the buffer with r1 from 100. After the fork the new

process will have a copy of that buffer as well. This will cause us to see that line twice, once from

each process. Students do not need to provide this explanation for full marks.



Locking (15 marks total)

Consider the following code.

1 static pthread_mutex_t buffer_mutex = PTHREAD_MUTEX_INITIALIZER;

2 static pthread_mutex_t socket_mutex = PTHREAD_MUTEX_INITIALIZER;

3

4 void code1(void) {

5 pthread_mutex_lock(&buffer_mutex);

6 pthread_mutex_lock(&socket_mutex);

7 use_buffer_and_socket(); /* Uses the buffer and socket */

8 pthread_mutex_unlock(&socket_mutex);

9 pthread_mutex_unlock(&buffer_mutex);

10 }

11

12 void code2(void) {

13 pthread_mutex_lock(&buffer_mutex);

14 use_buffer(); /* Uses just the buffer */

15 pthread_mutex_unlock(&buffer_mutex);

16 }

17

18 void code3(void) {

19 pthread_mutex_lock(&socket_mutex);

20 use_socket(); /* Uses just the socket */

21 pthread_mutex_unlock(&socket_mutex);

22 }

23

24 void code4(void) {

25

26

27

28 use_buffer_and_socket(); /* Uses the buffer and socket */

29

30

31

32 }

Assume that mutex calls never return an error.

Q23 (4 marks). Assume that code1, code2, and code3 are called by any number of threads. Is it possible for

the process to deadlock? Explain why or why not.

No, it is not possible for the process to deadlock. code1 is the only function whose critical section

uses two locks, and they’re always locked in the same order. Therefore, it’s not possible to have

a circular wait, and a deadlock cannot occur.



Q24 (6 marks). Assume now that code1, code2, code3, and code4 are called by any number of threads. Add

pthread_mutex_lock and pthread_mutex_unlock calls to code4 such that: 1) the use_buffer_and_socket function

is only called when both mutexes are held, 2) at the end of the function both mutexes are unlocked, and 3)

a deadlock may occur. (Yes, you’re creating a bug that may be difficult to find and fix). You may add your

code directly to the previous page, or write your version of code4 below.

pthread_mutex_lock(&socket_mutex);

pthread_mutex_lock(&buffer_mutex);

use_buffer_and_socket(); /* Uses the buffer and socket */

pthread_mutex_unlock(&buffer_mutex);

pthread_mutex_unlock(&socket_mutex);

Q25 (5 marks). Describe a sequence of four threads executing concurrently, where:

• Thread 1 calls code1

• Thread 2 calls code2

• Thread 3 calls code3

• Thread 4 calls a modified version of code4

Explain how the order of execution can lead to all threads deadlocking. Include the sequence of events and

the specific conditions that cause the deadlock.

Thread 1 locks the buffer_mutex

Thread 4 locks the socket_mutex

Now:

• Thread 1 cannot make progress, lock held by thread 4

• Thread 2 cannot make progress, lock held by thread 1

• Thread 3 cannot make progress, lock held by thread 4

• Thread 4 cannot make progress, lock held by thread 1



Condition Variables (22 marks total)

Consider the following code:

1 #define LAST_VALUE 3

2

3 static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

4 static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

5 static int counter = 0;

6

7 void* run1(void*) {

8 while (1) {

9 pthread_mutex_lock(&mutex);

10 while (counter % 2 != 0) {

11 pthread_cond_wait(&cond, &mutex);

12 }

13 printf("Even: %d\n", counter);

14 ++counter;

15 pthread_cond_signal(&cond);

16 if (counter >= LAST_VALUE) {

17 pthread_mutex_unlock(&mutex); /* (A) */

18 return NULL;

19 }

20 pthread_mutex_unlock(&mutex);

21 }

22 }

23

24 void* run2(void*) {

25 while (1) {

26 pthread_mutex_lock(&mutex);

27 while (counter % 2 == 0) {

28 pthread_cond_wait(&cond, &mutex);

29 }

30 printf("Odd: %d\n", counter);

31 ++counter;

32 pthread_cond_signal(&cond);

33 if (counter >= LAST_VALUE) {

34 pthread_mutex_unlock(&mutex); /* (B) */

35 return NULL;

36 }

37 pthread_mutex_unlock(&mutex);

38 }

39 }

40

41 int main(void) {

42 pthread_t thread[2];

43 pthread_create(&thread[0], NULL, run1, NULL);

44 pthread_create(&thread[1], NULL, run2, NULL);

45 pthread_join(thread[0], NULL);

46 pthread_join(thread[1], NULL);

47 return 0;

48 }

Assume that all system calls are successful.



Q26 (10 marks). Show a possible output of the code. If it is the only possible output, state so. Otherwise,

provide one alternative output.

There is only one possible output:

Even: 0

Odd: 1

Even: 2

Odd: 3

Q27 (4 marks). Your friend modifies the original code and removes the call to pthread_mutex_unlock on line

17 (it also has /* (A) */ on the same line). Does the program terminate? Briefly explain why or why not.

The program will not terminate in this case. The last time the “even” thread runs, it’ll print Even: 2,

increase the counter to 3, wake up the other thread, then terminate this thread. The other thread

will not be able to acquire the mutex and return from pthread_cond_wait, it’ll block forever.

Q28 (4 marks). A different friend modifies the original code and removes the call to pthread_mutex_unlock

on line 34 (it also has /* (B) */ on the same line). Does the program terminate? Briefly explain why or why

not.

The program will terminate in this case. After the “even” thread prints Even: 2, it’ll unlock the

mutex and terminate. The “odd” thread can then return from pthread_cond_wait, print Odd: 3, then

terminate with the mutex locked. However, since this is the last thread, it’ll terminate, the main

thread will return from the joins, and the process exits.

Q29 (4 marks). Would the original code always terminate if there are two threads running run2 instead of

one? Note, there would still be one thread running run1 and the main thread would join on all three threads.

Explain why it always terminates, or a situation where it will not terminate.

It may not terminate, consider both threads running run2 are blocked doing a pthread_cond_wait

when counter = 2. The other thread will increment counter to 3 then only wake up one thread.

One thread will print out Odd: 3, increment the counter to 4 and terminate. The other thread will

never be able to make it out of the inner while loop.



Semaphores (15 marks total)

Consider the following code:

1 static sem_t sem;

2

3 void initialize_semaphore(void) {

4 sem_init(&sem, 0, x);

5 }

6

7 void* run(void*) {

8

9

10 resource_acquire(r);

11

12

13 /* Use the resource */

14

15

16 resource_release(r);

17

18

19

20 perform_other_work();

21 return NULL;

22 }

You’re given the task of protecting a resource the run function. This function may be called in parallel with

any number of threads.

Q30 (10marks). Using a single semaphore, ensure that only a maximum of 4 threads could use the resource

in parallel. You’ll need to insert sem_post and sem_wait calls, and provide an initial value (replacing x). You

want to ensure that the perform_other_work function can run in parallel with any number of threads. Do not

change the order of function calls in the run function. Write your answers on this page.

Change x to 4. Add sem_wait to line 9, and sem_post to line 17.

Q31 (5 marks). Assume that the perform_other_work function did not have to run after using the resource.

Describe how you would change the code so that if the resource is busy, threads can still run in parallel

without blocking. You do not have to write any code, you can state which function(s) you’d use.

We could use a sema_trywait, if we did not successfully decrement thenwe can call the perform_other_work

function (or a smaller part of it), and try again. Whenever you fail to decrement, go back to doing

other work.



Page Replacement (18 marks total)

Assume the following accesses to physical page numbers:

5, 4, 3, 2, 3, 1, 2, 3, 5, 1, 2, 4

You have 4 physical pages in memory. Assume that all pages are initially on disk.

Q32 (10marks). Use the clock algorithm for page replacement. Recall on a page hit, you’ll set the reference

bit to 1. For each access write all the pages in memory after the access in the boxes below. State the number

of page faults after all the accesses.

5 4 3 2 3 1 2 3 5 1 2 4

5 5 5 5 5 1 1 1 1 1 1 1

4 4 4 4 4 4 4 5 5 5 5

3 3 3 3 3 3 3 3 3 4

2 2 2 2 2 2 2 2 2

7 page faults.

Q33 (6 marks). Now, use the LRU algorithm for page replacement. All the other constraints are the same

as the previous clock algorithm question. For each access write all the pages in memory after the access in

the boxes below. State the number of page faults after all the accesses.

5 4 3 2 3 1 2 3 5 1 2 4

5 5 5 5 5 1 1 1 1 1 1 1

4 4 4 4 4 4 4 5 5 5 5

3 3 3 3 3 3 3 3 3 4

2 2 2 2 2 2 2 2 2

7 page faults.

Q34 (2 marks). Briefly explain why we’d choose to implement the clock algorithm over LRU.

In practice LRU will be too slow because multiple updates need to happen on a page reference.

For the clock algorithm only a single bit may change on a reference.



Filesystems (15 marks total)

Consider the following output from running ls -li (as a reminder the first column is the inode number):

31 -rw-r--r-- 1 ece ece 96 Dec 7 14:00 a.txt

32 -rw-r--r-- 1 ece ece 4000 Dec 7 14:01 b.txt

64 lrwxrwxrwx 1 ece ece 5 Dec 7 14:02 c.txt -> a.txt

128 lrwxrwxrwx 1 ece ece 5 Dec 7 14:03 d.txt -> c.txt

Assume a filesystem with a block size of 4096 bytes, 4-byte block pointers, and 128-byte inodes. inodes

have 12 direct pointers, 1 indirect pointer, 1 double indirect pointer, and 1 triple indirect pointer.

Q35 (2 marks). How many bytes are lost due to internal fragmentation for the regular files in the output?

In total there are 4096 bytes lost. 4000 from a.txt and 96 from b.txt.

Q36 (1 marks). How many I/O blocks are needed to store the content of c.txt?

0, the content would be stored on the inode itself.

Q37 (4 marks). Assume the user runs cat d.txt, assuming nothing is cached, how many I/O blocks need

to be read from disk? Ignore reads to the directory. Describe the order of the block reads and what they

contain.

1. Read inode 128 from inode block 3 (inode contains c.txt)

2. Read inode 64 from inode block 1 (inode contains a.txt)

3. Read inode 31 from inode block 0

4. Read file content block, pointed to by inode 31

(we’d also give full marks for 6 if the answer of the previous question was 1)

Q38 (5 marks). A file has 1050636 (or 12+ 2
11 + 2

20
) I/O blocks of content. How many index blocks are

needed, in total, to store the pointers using an inode? You may skip the final calculation if you don’t have a

calculator.

The first 12 pointers are stored on the inode itself. The next 2
10
pointers would be stored on 1

single indirect block. We would need 1 double indirect block, that would point to 2
10
more single

indirect blocks, this stores 2
20
pointers. We have 2

10
pointers left. Finally, there would need to be

1 triple indirect block, pointing to 1 double indirect block, pointing to 1 single indirect block storing

the last 2
10
pointers. In total, we need 1029 (or 1+ 1+ 2

10 + 3) index blocks.

Q39 (3 marks). Assume a user ran the following commands:

mv a.txt e.txt

ln b.txt a.txt

Write the resulting (inode, name) pairs for regular files in the directory.

(32, a.txt)

(32, b.txt)

(31, e.txt)




