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There are 3Major Concepts in This Course

You’ll learn how the following applies to operating systems:

• Virtualization

• Concurrency

• Persistence
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Kernel InterfacesOperate BetweenCPUMode Boundaries

The lessons from the lecture:

• Code running in kernel mode is part of your kernel

• System calls are the interface between user and kernel mode

• Every program must use this interface!

• File format and instructions to define a simple “Hello world” (in 168 bytes)

• Difference between API and ABI

• How to explore system calls

• Different kernel architectures shift how much code runs in kernel mode
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Operating SystemsProvide the Foundation for Libraries

We learned:

• Dynamic libraries and a comparison to static libraries

• How to manipulate the dynamic loader

• Example of issues from ABI changes without API changes
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Unix SystemsClone Processeswith a Parent/Child

Relationship

• You can only create new processes with fork

• After a fork both processes are exactly the same
• except for the value of pid (the child is always 0)

• The scheduler decides when to run either process
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You’re Responsible forManaging Processes

The operating system maintains a strict parent/child relationship

You should be able to identify (and prevent) the following:

• Zombie processes

• Orphan processes
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WeExplored Basic IPC in anOperating System

Some basic IPC includes:

• read and write through file descriptors (could be a regular file)

• Redirecting file descriptors for communcation

• Signals

Signals are like interrupts for user processes

The kernel has to handle all 3 kinds of “interrupts”
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Scheduling Involves Trade-Offs

We looked at few different algorithms:

• First Come First Served (FCFS) is the most basic scheduling algorithm

• Shortest Job First (SJF) is a tweak that reduces waiting time

• Shortest Remaining Time First (SRTF) uses SJF ideas with preemptions

• SRTF optimizes lowest waiting time (or turnaround time)

• Round-robin (RR) optimizes fairness and response time
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SchedulingGets EvenMoreComplex

There are more solutions, and more issues:

• Introducing priority also introduces priority inversion

• Some processes need good interactivity, others not so much

• Multiprocessors may require per-CPU queues

• Real-time requires predictability

• Completely Fair Scheduler (CFS) tries to model the ideal fairness
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Page Tables TranslateVirtual to Physical Addresses

The MMU is the hardware that uses page tables, which may:

• Be a single large table (wasteful, even for 32-bit machines)

• Use the kernel allocated pages from a free list

• Be a multi-level to save space for sparse allocations

• Use a TLB to speed up memory accesses
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Threads Enable Concurrency

We explored threads, and related them to something we already know

(processes)

• Threads are lighter weight, and share memory by default

• Each process can have multiple threads (but just one at the start)
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Both Processes and (Kernel) Threads Enable Parallelization

• Each process can have multiple (kernel) threads

• Most implementations use one-to-one user-to-kernel thread mapping

• The operating system has to manage what happens during a fork, or

signals

• We now have synchronization issues
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AForkingQuestion

Consider the following code:

int main() {

pid_t first = fork();

pid_t second = fork();

pid_t third = fork();

printf("first=%d second=%d third=%d\n", first, second, third);

}

What is one reasonable set of outputs (assume the initial process is pid 2)?

Are the outputs in any specific order?

What do the relationships between processes look like?
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ExampleMidterms

Check my past courses archive: https://eyolfson.com/courses/archive/

ECE353 and CS111 at UCLA are essentially the same course
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