
Kernels

2024 Fall ECE 344: Operating Systems

Jon Eyolfson

Lecture 2

2.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Let’s Execute This ProgramandVerify It’s “Helloworld”

0x7F 0x45 0x4C 0x46 0x02 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x02 0x00 0xB7 0x00 0x01 0x00 0x00 0x00 0x78 0x00 0x01 0x00 0x00 0x00 0x00 0x00

0x40 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x40 0x00 0x38 0x00 0x01 0x00 0x40 0x00 0x00 0x00 0x00 0x00

0x01 0x00 0x00 0x00 0x05 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00

0xA8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xA8 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x10 0x00 0x00 0x00 0x00 0x00 0x00 0x08 0x08 0x80 0xD2 0x20 0x00 0x80 0xD2

0x81 0x13 0x80 0xD2 0x21 0x00 0xA0 0xF2 0x82 0x01 0x80 0xD2 0x01 0x00 0x00 0xD4

0xC8 0x0B 0x80 0xD2 0x00 0x00 0x80 0xD2 0x01 0x00 0x00 0xD4 0x48 0x65 0x6C 0x6C

0x6F 0x20 0x77 0x6F 0x72 0x6C 0x64 0x0A

Execute using: ./hello-world-linux-aarch64

1

Aside: There’s 3Major ISAs in Use Today

ISA stands for the instruction set architecture

It’s the machine code, or numbers the CPU understands

x86-64 (aka amd64): for desktops, non-Apple laptops, servers

aarch64 (aka arm64): for phones, tablets, Apple laptops

riscv (aka rv64gc): open-source implementation, similar to ARM

We’ll touch on all of them in this course

2

OurNext Abstraction is a File Descriptor

Since our processes are independent, we need an explicit way to transfer

data

IPC: inter-process communication is transferring data between two

processes

File descriptor: a resource that users may either read bytes from or write

bytes to

(identified by an index stored in a process)

A file descriptor could represent a file, or your terminal

3

SystemCallsMake Requests to theOperating System

We can represent system calls like regular C functions

Here are two system calls we need for a basic “Hello world” program:

ssize_t write(int fd, const void *buf, size_t count);

Description: writes bytes from a byte array to a file descriptor

fd - the file descriptor

buf - the address of the start of the byte array (called a buffer)

count - how many bytes to write from the buffer

void exit_group(int status);

Description: exits the current process and sets an exit status code

status - the exit status code (0-255)

4

AHypothetical “Helloworld” Program

By convention there’s some expected file descriptors:

0 - standard input (read)

1 - standard output (write)

2 - standard error (write)

The most basic “Hello world” program would start executing the following:

void _start(void) {

write(1, "Hello world\n", 12);

exit_group(0);

}

5

Another Aside: API Tells YouWhat andABI Tells YouHow

Application Programming Interface (API) abstracts the details and describes

the arguments and return value of a function

e.g. A function takes 2 integer arguments

Application Binary Interface (ABI) specifies the details, specifically how to

pass arguments and where the return value is

e.g. The same function using the C calling convention

(arguments on the stack)

6

SystemCall ABI for LinuxAArch64

The operating system “functions” do not have an address,

instead we can generate an interrupt for the OS

Generate an interrupt with a svc instruction, using registers for arguments:

• x8— System call number

• x0— 1
st
argument

• x1— 2
nd
argument

• x2— 3
rd
argument

• x3— 4
th
argument

• x4— 5
th
argument

• x5— 6
th
argument

What are the limitations of this?

7

Last Aside: CABI,or Calling Convention for x86-64

System calls use registers, while C is stack based:

• Arguments pushed on the stack from right-to-left order

• rax, rcx, rdx are caller saved

• Remaining registers are callee saved

• Some arguments may be passed in registers instead of the stack

See Wikipedia for more details (there’s lots of conventions, think ECE 243)

What advantages does this give us vs system call ABI? Disadvantages?

8

https://en.wikipedia.org/wiki/X86_calling_conventions

Programs on Linux Use the ELF File Format

Executable and Linkable Format (ELF) specifies both executables and

libraries

Always starts with the 4 bytes: 0x7F 0x45 0x4C 0x46

or with ASCII encoding: DEL 'E' 'L' 'F'

These 4 bytes are called “magic”, and that’s how you know what kind of file

this is (other file formats may have a different number of bytes)

See: https://en.wikipedia.org/wiki/List_of_file_signatures

e.g., PDF files start with %PDF-

9

https://en.wikipedia.org/wiki/List_of_file_signatures

Our Bytes Represent an ELF File

Tells the OS to load the entire executable file into memory at address 0x10000

The file header is 64 bytes, and the “program header” is 56 bytes

(120 bytes total)

The next 36 bytes are instructions, then 12 bytes for the string

"Hello world\n"

Instructions start at 0x10078 (0x78 is 120)

The string (data) starts at 0x1009C (0x9C is 156)

You can use: readelf -a <FILE> to see the gory details

10

Visually HowOur ELF File Gets Divided

11

Instructions for “Helloworld”,Using the LinuxAArch64ABI

Plug in the 36 bytes for instructions into a disassembler, such as:

https://onlinedisassembler.com/

Our disassembled instructions:

mov x8, 0x40 #64

mov x0, 0x01 #1

mov x1, 0x9C #156

movk x1, 0x01, lsl 16 #0x10000

mov x2, 0x0C #12

svc 0x0

mov x8, 0x5E # 94

mov x0, 0x0 # 0

svc 0x0

12

https://onlinedisassembler.com/

Data for Our “Helloworld” Example

The 12 bytes of data is the "Hello world" string itself, ASCII encoded:

0x48 0x65 0x6C 0x6C 0x6F 0x20 0x77 0x6F 0x72 0x6C 0x64 0x0A

Low level ASCII tip: bit 5 is 0/1 for upper case/lower case (values differ by 32)

This accounts for every single byte of our 168 byte program, let’s see what C

does...

Can you already spot a difference between strings in our example compared

to C?

13

TheKernel is a Core Part of Your Operating System

Kernel mode is a privilege level on your CPU that gives access to more

instructions

Different architectures have a different name for this mode

e.g., this is S-mode on RISC-V

The kernel is the part of your operating system that runs in kernel mode

These instructions allow only trusted software to interact with hardware

e.g., only the kernel can manage virtual memory for processes

14

TheKernel is a Core Part of Your Operating System

Kernel mode is a privilege level on your CPU that gives access to more

instructions

Different architectures have a different name for this mode

e.g., this is S-mode on RISC-V

The kernel is the part of your operating system that runs in kernel mode

These instructions allow only trusted software to interact with hardware

e.g., only the kernel can manage virtual memory for processes

14

More PrivilegedCPUModesCanAccessMore Instructions

15

SystemCalls Transition BetweenUser andKernelMode

User space

Kernel space

(453 total)

read write open close stat mmap brk pipe clone fork

execve exit wait4 chdir mkdir rmdir creat mount

init_module delete_module clock_nanosleep exit_group

16

SystemCalls Are Traceable

We can trace all the system calls a process makes on Linux using the

command:

strace <PROGRAM>

We can see all the system calls our “Hello world” program makes:

execve("./hello_world", ["./hello_world"], 0x7ffd0489de40 /* 46 vars */) = 0

write(1, "Hello world\n", 12) = 12

exit_group(0) = ?

+++ exited with 0 +++

Now, let’s really see what C does...

17

SystemCalls for “Helloworld” inC,FindingStandard Library

execve("./hello_world_c", ["./hello_world_c"], 0x7ffcb3444f60 /* 46 vars */) = 0
brk(NULL) = 0x5636ab9ea000
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=149337, ...}) = 0
mmap(NULL, 149337, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f4d43846000
close(3) = 0
openat(AT_FDCWD, "/usr/lib/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0000C"..., 832) = 832
lseek(3, 792, SEEK_SET) = 792
read(3, "\4\0\0\0\24\0\0\0\3\0\0\0GNU\0\201\336\t\36\251c\324"..., 68) = 68
fstat(3, {st_mode=S_IFREG|0755, st_size=2136840, ...}) = 0
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f4d43844000
lseek(3, 792, SEEK_SET) = 792
read(3, "\4\0\0\0\24\0\0\0\3\0\0\0GNU\0\201\336\t\36\251c\324"..., 68) = 68
lseek(3, 864, SEEK_SET) = 864
read(3, "\4\0\0\0\20\0\0\0\5\0\0\0GNU\0\2\0\0\300\4\0\0\0\3\0\0", 32) = 32

18

SystemCalls for “Helloworld” in C,

Loading Standard Library

mmap(NULL, 1848896, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f4d43680000
mprotect(0x7f4d436a2000, 1671168, PROT_NONE) = 0
mmap(0x7f4d436a2000, 1355776, PROT_READ|PROT_EXEC,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x22000) = 0x7f4d436a2000
mmap(0x7f4d437ed000, 311296, PROT_READ,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x16d000) = 0x7f4d437ed000
mmap(0x7f4d4383a000, 24576, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1b9000) = 0x7f4d4383a000
mmap(0x7f4d43840000, 13888, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7f4d43840000
close(3) = 0
arch_prctl(ARCH_SET_FS, 0x7f4d43845500) = 0
mprotect(0x7f4d4383a000, 16384, PROT_READ) = 0
mprotect(0x5636a9abd000, 4096, PROT_READ) = 0
mprotect(0x7f4d43894000, 4096, PROT_READ) = 0
munmap(0x7f4d43846000, 149337) = 0
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(0x88, 0x1), ...}) = 0

19

SystemCalls for “Helloworld” in C,

Setting UpHeap and Printing

brk(NULL) = 0x5636ab9ea000

brk(0x5636aba0b000) = 0x5636aba0b000

write(1, "Hello world\n", 12) = 12

exit_group(0) = ?

+++ exited with 0 +++

The C version of “Hello world” ends with

the exact same system calls we made

20

YouCanThink of theKernel as a Long Running Process

Writing kernel code is more like writing library code (there’s no main)

The kernel lets you load code (called modules)

Your code executes on-demand

e.g. when it’s loaded manually, new hardware, or accessing a certain file

If you write a kernel module, you can execute privileged instructions

and access any kernel data, so you could do anything

21

AMonolithic Kernel RunsOperating SystemServices in

KernelMode

User space

Kernel space

Process SchedulingVirtual Memory IPC

Device DriversFile Systems

22

AMicrokernel Runs theMinimumAmount of Services in

KernelMode

User space

Kernel space

Process SchedulingVirtual Memory Basic IPC

Device DriversFile Systems Advanced IPC

23

Other Types of Kernels

“Hybrid” kernels are between monolithic and microkernels

Emulation services to user mode (Windows)

Device drivers to user mode (macOS)

Nanokernels and picokernels

Move even more into user mode than traditional microkernels

There’s different architectural lines you can draw with different trade-offs

24

Kernel InterfacesOperate BetweenCPUMode Boundaries

The lessons from the lecture:

• The kernel is the part of the OS that interacts with hardware

(it runs in kernel mode)

• System calls are the interface between user and kernel mode

• Every program must use this interface!

• File format and instructions to define a simple “Hello world” (in 168 bytes)

• Difference between API and ABI

• How to explore system calls

• Different kernel architectures shift how much code runs in kernel mode

25

