
Locks

2024 Fall ECE 344: Operating Systems

Jon Eyolfson

Lecture 21

2.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


Data RacesCanOccurWhen Sharing Data

A data race is when two concurrent actions access the same variable

and at least one of them is a write operation

1



AtomicOperations are Indivisible

Any atomic instruction you may assume happens all at once

This means you can not preempt it

However, between two atomic instructions, you may be preempted

2



ThreeAddressCode (TAC) is Intermediate CodeUsed by

Compilers

TAC is mostly used for analysis and optimization by compilers

Statements represent one fundamental operation (assume each is atomic)

Useful to reason about data races and easier to read than assembly

Statements have the form: result := operand1 operator operand2

3



GIMPLE is the TACused by gcc

To see the GIMPLE representation of your compilation use:

-fdump-tree-gimple flag

To see all the three address code generated by the compiler (gcc) use:

-fdump-tree-all flag

GIMPLE is easier to reason about your code at a low-level without assembly

4



17-threads-implementation/pthread-datarace.cData Race

Instead of count, we’ll look at pcount (the pointer to count, which is a global)

The GIMPLE is the following:

D.1 = *pcount;

D.2 = D.1 + 1;

*pcount = D.2;

Assuming that two threads execute this once each and initially *pcount = 0

What are the possible values of *pcount?

5



ToAnalyze Data Races,YouHave toAssumeAll Preemption

Possibilities

Let’s call the read and write from thread 1 R1 and W1 (R2 and W2 from thread

2)

We’ll assume no re-ordering of instructions: always read then write in a

thread

All possible orderings:

Order *pcount

R1 W1 R2 W2 2

R1 R2 W1 W2 1

R1 R2 W2 W1 1

R2 W2 R1 W1 2

R2 R1 W2 W1 1

R2 R1 W1 W2 1

6



YouCanCreateMutexes Statically or Dynamically

pthread_mutex_t m1 = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t m2;

pthread_mutex_init(&m2, NULL);

...

pthread_mutex_destroy(&m1);

pthread_mutex_destroy(&m2);

If you want to include attributes, you need to use the dynamic version

7



EverythingWithin the Lock andUnlock is a Critical Section

// code

pthread_mutex_lock(&m1);

// protected code

pthread_mutex_unlock(&m1);

// more code

Everything within the lock and unlock is protected

Be careful to avoid deadlocks if you are using multiple mutexes

There’s also a pthread_mutex_trylock if needed

8



Adding a Lock to Prevent the Data Race

static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; /* New */

static int counter = 0;

void* run(void* arg) {

for (int i = 0; i < 100; ++i) {

pthread_mutex_lock(&mutex); /* New */

++counter;

pthread_mutex_unlock(&mutex); /* New */

}

}

int main(int argc, char *argv[])

{

// Create 8 threads

// Join 8 threads

pthread_mutex_destroy(&mutex); /* New */

printf("counter = %i\n", counter);

}

9



ACritical SectionMeansOnlyOne Thread Executes

Instructions

Safety (aka mutual exclusion)

There should only be a single thread in a critical section at once

Liveness (aka progress)

If multiple threads reach a critical section, one must proceed

The critical section can’t depend on outside threads

You can mess up and deadlock (threads don’t make progress)

Bounded waiting (aka starvation-free)

A waiting thread must eventually proceed

10



Critical Sections ShouldAlsoHaveMinimal Overhead

Efficient

You don’t want to consume resources while waiting

Fair

You want each thread to wait approximately the same time

Simple

It should be easy to use, and hard to misuse

11



Similar to Libraries,YouWant Layers of Synchronization

Properly synchronized application

High-level synchronization primitives

Hardware-provided low-level atomic operations

12



YouCould Use a Lock to Implement Critical Sections

Assuming a uniprocessor operating system, your implementation could be:

void lock() {

disable_interrupts();

}

void unlock() {

enable_interrupts();

}

This would disable concurrency (assuming it ignores signals and interrupts)

This does not work on multiprocessors

13



Let’s Try to Implement a Lock in Software

void init(int *l) {

*l = 0;

}

void lock(int *l) {

while (*l == 1);

*l = 1;

}

void unlock(int *l) {

*l = 0;

}

What’s the issue with this implementation?

It’s not safe (both threads can be in the critical section)

It’s not efficient, it wastes CPU cycles (busy wait)

14



Let’s Try to Implement a Lock in Software

void init(int *l) {

*l = 0;

}

void lock(int *l) {

while (*l == 1);

*l = 1;

}

void unlock(int *l) {

*l = 0;

}

What’s the issue with this implementation?

It’s not safe (both threads can be in the critical section)

It’s not efficient, it wastes CPU cycles (busy wait)

14


