
Filesystems

2024 Fall ECE 344: Operating Systems

Jon Eyolfson

Lecture 27

2.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Filesystems

Usual layout of a POSIX Filesystem (here: parts of FHS):

/

etcdevbin home mnt

jon

todo.txt

usb

Working Directory: /home/jon

What is the absolute and relative path to todo.txt? To usb?

1

POSIX Filesystem

todo.txt Relative: ./todo.txt

todo.txt Absolute: /home/jon/todo.txt

usb Relative: ../../mnt/usb

usb Absolute: /mnt/usb

Special symbols:

. — Current directory

.. — Parent directory

∼— User’s home directory ($HOME)

Relative paths are calculated from current working directory ($PWD)

2

YouCanAccess Files Sequentially or Randomly

Sequential access

Each read advances the position inside the file

Writes are appended and the position set to the end afterwards

Random access

Records can be read/written to the file in any order

A specific position is required for each operation

3

POSIX Filesystem

int open(const char *pathname, int flags, mode_t mode);

// flags can specify which operations: O_RDWR,O_WRONLY, O_RDWR

// also: O_APPEND moves the position to the end of the file initially

off_t lseek(int fd, off_t offset, int whence);

// lseek changes the position to the offset

// whence can be one of: SEEK_SET, SEEK_CUR, SEEK_END

// set makes the offset absolute, cur and end are both relative

4

Accessing DirectoryAPI

DIR *opendir(char *path); // open directory

struct dirent *readdir(DIR *dir); // get next item

int closedir(DIR *dir); // close directory

void print_directory_contents(char *path) {

DIR *dir = opendir(path);

struct dirent *item;

while (item = readdir(dir)) {

printf("- %s\n", item->d_name);

}

closedir(path);

}

5

File TablesAre Stored in the ProcessControl Block (PCB)

PCB 1

0

1

2

PCB 2

0

1

2

position

flags

*vnode

position

flags

*vnode

position

flags

*vnode

vnode File A

vnode File B

6

Each ProcessContains a File Table in its PCB

A File Descriptor is an index in the table

Each item points to a system-wide global open file table

The GOF table holds information about the seek position and flags

It also points to a VNode (supports read/write/etc)

A vnode (virtual mode) holds information about the file

vnodes can represent regular files, pipes, network sockets, etc.

7

RememberWhat Happens InA Fork

PCB is copied on fork

Specifically for us, the local open file table gets inherited

Both PCBs point to the same Global Open File Table entry

8

Both Processes Point to the SameGOF Entry

PCB 1

0

1

2

PCB 2

0

1

2

position

flags

*vnode vnode File A

9

ThereAre Some “Gotchas” For This Sharing

Current position in file is shared between both processes

Seek in one process leads to seek in all other processes using the same GOF

entry

Opening the same file in both processes after forking creates multiple GOF

entries

10

Howmany LOF andGOF Entries Exist? What is the

Relationship?

open("todo.txt", O_RDONLY);

fork();

open("b.txt", O_RDONLY);

Assume there are no previously opened files (not even the standard ones)

11

There are 2 LOF Entries Each,and 3GOF Entries

Parent

0

1

Child

0

1

position

flags

*vnode

position

flags

*vnode

position

flags

*vnode

vnode todo.txt

vnode b.txt

12

HowDoWeStore Files? ContiguousAllocation?

13

ContiguousAllocation Is Fast, If ThereAreNoModifications

Space efficient: Only start block and # of blocks need to be stored

Fast random access: block = floor(offset

blocksize
)

Files can not grow easily

Internal fragmentation (may not fill a block)

External fragmentation when files are deleted or truncated

14

WhatAbout Storing Like a Free List of Pages?

LinkedAllocation

15

LinkedAllocationHas SlowRandomAccess

Space efficient: Only start block needs to be stored

Blocks need to store a pointer to the next block (block is slightly smaller)

Files can grow/shrink

No external fragmentation

Internal fragmentation

How can we increase random access speed? We need to walk each block

Each block may be located far away (it will never be cached)

16

File Allocation TableMoves The List to a Separate Table

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

17

File Allocation Table (FAT) is Similar to LinkedAllocation

Files can grow/shrink

No external fragmentation

Internal fragmentation

Fast random access: FAT can be held in memory/cache

FAT size is linear to disk size: can become very large

How can we further increase random access speed?

18

IndexedAllocationMaps Each Block Directly

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

19

For IndexedAllocation,Each File Needs an Index Block

Files can still grow/shrink

No external fragmentation

Internal fragmentation

Fast random access

File size limited by the maximum size of the index block (fit it in one block)

20

IndexedAllocation Problem

Assume this scenario:

• An index block stores pointers to data blocks only (no meta information)

• A disk block is 8 KiB in size

• A pointer to a block is 4 Bytes

What is the maximum size of a file managed by this index block?

21

IndexedAllocation Solution

Assume this scenario:

• An index block stores pointers to data blocks only (no meta information)

• A disk block is 8 KiB in size

• A pointer to a block is 4 Bytes

of pointers =
8KiB

4B

2
13
B

22B
= 2

11

of addressable blocks = # of pointers

Total of bytes = 2
11 × 2

13 = 2
24 = 16MiB

22

Filesystems Enable Persistence

They describe how files are stored on disks:

• API-wise you can open files, and change the position to read/write at

• Each process has a local open file and there’s a global open file table

• There’s multiple allocation strategies: contiguous, linked, FAT, indexed

23

