Page Replacement

2024 Fall ECE 344: Operating Systems Lecture 29
Jon Eyolfson 2.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Computer Memory Hierarchyis a
Trade-off of Capacity and Speed

CPU

Capacity CPU Cache Speed (and price)

Memory (RAM)

Non-Volatile Memory (NVMe)

SATA Solid State Disk (SSD)

Hard Disk Drive (HDD)

Tape Drives

Each level wants to pretend it has the speed of the layer above it
and the capacity of the layer below it

The memory used by all the processes my exceed the amount of physical

memory
Not all of them may be in use at the same time

Only keep referenced pages in memory, put others on disk
Swap pages back to memory when they're needed

We use memory as a cache for the file system

Map memory pages to file system blocks

Only load them into memory when they're used through the page fault
handler

If the page doesn't represent a file, we can map it to swap space
Move it to disk if we need to use more physical memory

Given an amount of time, the number of pages your process uses is called its
working set

If you cannot fit your working set into physical memory your process will
thrash

It's constantly moving entries in and out of cache

Optimal
Replace the page that won't be used for the longest

Random
Replace a random page

First-in First-out (FIFO)
Replace the oldest page first

Least Recently Used (LRU)
Replace the page that hasn't been used in the longest time

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

We'll use this for a bunch of examples during this lecture
We want the fewest number of page faults

For every example we'll find the number of page faults

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3
1 1
2

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

N
w N = |

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

N
w N = |
A W N - |-

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

N
w N = |
A W N - |-

2
1
2
3
4

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

N
w N = |
A W N - |-

2 5
1 1
2 2
3 3
4

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

5
1
2
3

N
w N = |
A W N - |-

2
1
2
3
4

a W N = |-

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2
1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3

4 4 5 5

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 5 5 5

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3 4
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 5 5 5 5

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 1 1 4

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

4 4 5 5 5 5 5

Assume our physical memory can only hold 4 pages, and we access the

following:

123412512345 (all of the pages are initially on disk)

N
w N = |

A W N 2|

2
1
2
3
4

5
1
2
3

a W N = |-

2
1
2
3
5

3
1
2
3
5

4 5

4
2 2
3 3
5 5

6 page faults

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3
1 1
2

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

N
w N = |

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3

N
w N = b
A w N o |-

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3

N
w N = b
A w N o |-

2
1
2
K]
4

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5
1 1 1

2 2 2 2 2
K K 3

4 4 4

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1
1 1 1 5
2 2 2 2 2
K K 3 K
4 4 4 4

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1
1 1 1 5 5
2 2 2 2 2
K K 3 K
4 4 4 4 4

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 3
1 1 1 5 5 5
2 2 2 2 2 1
K K 3 K 2
4 4 4 4 4

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 3 4
1 1 1 5 5 5
2 2 2 2 2 1

K K 3 3 2 2

4 4 4 4 4 3

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 3 4
1 1 1 5 5 5 4
2 2 2 2 2 1
K K 3 K 2 2 2
4 4 4 4 4 3 3

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 3 4
1 1 1 5 5 5 4
2 2 2 2 2 1
K K 3 K 2 2 2
4 4 4 4 4 3 3

10 page faults

Assume our physical memory can only hold 3 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

10000000000

Assume our physical memory can only hold 3 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

15000000000

Assume our physical memory can only hold 3 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1BH00000000C

Assume our physical memory can only hold 3 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

JBHE0000000C

Assume our physical memory can only hold 3 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

JHHEE000000

Assume our physical memory can only hold 3 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

JHBEER00000C

Assume our physical memory can only hold 3 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5]
1 1 4 4

2 2 1 1

K 3 2

Assume our physical memory can only hold 3 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5]
1 1 4 4

2 2 1 1

K 3 2

N = Ul | =

Assume our physical memory can only hold 3 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5]
1 1 4 4

2 2 1 1

K 3 2

N = Ul | =
N = O1 N

Assume our physical memory can only hold 3 pages, and we access the

following:

123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5]
1 1 4 4

2 2 1 1

K 3 2

N = Ul | =

3

N = 01N

Assume our physical memory can only hold 3 pages, and we access the

following:

123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5]
1 1 4 4

2 2 1 1

K 3 2

N = Ul | =

3 4

N = 01N

Assume our physical memory can only hold 3 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5]
1 1 4 4

2 2 1 1

K 3 2

3 4

N = O =

N = 01N
w

A W oo

Assume our physical memory can only hold 3 pages, and we access the

following:

123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5]
1 1 4 4

2 2 1 1

3 3 2

N = Ul | =

3 4

N = O N
w
A W oo

9 page faults

This is a problem with FIFO algorithms
Does not exist with LRU or “stack-based algorithms"”

Paper in 2010 found that this FIFO anomaly is unbounded
()

You could construct a sequence to get any arbitrary page fault ratio

For other algorithms:
increasing the number of page frames decreases the number of page faults

10

https://arxiv.org/abs/1003.1336

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3
1 1
2

1

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

N
w N = s

1

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3

N
w N = b
A W N ==

1

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3

N
w N = b
A W N ==

2
1
2
3
4

1

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5
1 1 1

2 2 2 2 2
K 3 3

4 4 4

1

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1
1 1 1 1

2 2 2 2 2 2

K 3 3 5

4 4 4 4

1

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2
1 1 1 1 1

2 2 2 2 2 2 2

K 3 3 5 5

4 4 4 4 4

1

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3
1 1 1 1 1 1
2 2 2 2 2 2 2 2
K 3 3 5 5 5
4 4 4 4 4

1

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3 4
1 1 1 1 1 1

2 2 2 2 2 2 2 2 2
K 3 3 5 5 5

4 4 4 4 4 K

1

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

K 3 3 5 5 5 4

4 4 4 4 4 K 3

Assume our physical memory can only hold 4 pages, and we access the
following:
123412512345 (all of the pages are initially on disk)

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

K 3 3 5 5 5 4

4 4 4 4 4 K 3

8 page faults

1

You could implement it by keeping a counter for each page
For each page reference, save the system clock into the counter

For replacement, scan through the pages and find the one with the oldest
clock

12

Create a doubly linked list of pages
For each page reference, move it to the front of the list
For replacement, remove from the back of the list

It requires 6 pointer updates for each page reference, and
also creates a high contention bottleneck for multiple processors

13

We settle for approximate LRU
LRU is an approximation of the optimal case anyways

There's lots of different tweaks you can do to implement it more efficiently

We'll be looking at the clock algorithm, but there's also:
Least Frequently Used (LFU), 2Q, Adaptive Replacement Cache (ARC)

14

We saw the following:

e Optimal (good for comparison but not realistic)

e Random (actually works surprisingly well, avoids the worst case)
® FIFO (easy to implement but Bélady's anomaly)

* LRU (gets close to optimal but expensive to implement)

15

