Virtual Machines

2024 Fall ECE 344: Operating Systems Lecture 33
Jon Eyolfson 2.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License


http://creativecommons.org/licenses/by-sa/4.0/

Virtual Machines Abstract an Entire Machine

Goal: run multiple operating systems on a single machine
Each OS believes they're the only one running



The hypervisor or virtual machine manager (VMM) controls virtual machines
Creation, management, isolation (which hardware is it able to access)

There are two kinds of hypervisors: type 1and type 2
Type 1. bare metal hypervisor, it runs directly on the host's hardware
Requires special hardware support
Type 2: hosted hypervisor, it simulates a hypervisor and runs as an
application
Slower, but does not require any special hardware

A guest sees its own virtual copy of the host



processes

processes

processes processes

] [

N4
programming
~ interface kernel - rnel

V|rtual machlne
ager

hardware




Emulation is typically used to translate one ISA to another
e.g. x86_64 to ARM/RISC-V

Our guest operating system executes instructions directly using the same ISA
Otherwise, translating instructions is typically slow

It's OK for some uses, such as a Nintendo Entertainment System (NES)
emulator

A virtual machine could use emulation to run a virtual machine for a different

ISA
Performance would suffer greatly



Much like our kernel can pause a process, a hypervisor can pause an OS

The hypervisor needs to context switch between virtual machines
It'll save the current state and restores it later

We could also move it around, exactly like a process



The guests are isolated from each other, and the host

The hypervisor and set limits on: CPU time, memory, network bandwidth, etc.
A compromised guest only has access to its own virtualized hardware

You can easily roll back the infected virtual machine, or remove it



In data centers there are many servers running, often not making use of all
resources
Servers with different purposes could be sharing the same hardware

Instead of having lightly used physical systems, make them virtual machines
Run as many on a single machine as possible



For processes, part of the process control block (PCB) acted as a virtual CPU
It doesn't virtualize all parts of the CPU, just enough for user-mode
processes

The VCPU is a data structure that stores the state of the CPU
The hypervisor saves this when the guest isn't running

When the virtual machine resumes, like the PCB, it loads the data and
resumes



There are no changes to the guest operating systems
A Linux kernel still uses privileged instructions

Recall on x86_64 user mode is ring 3, kernel mode is ring 0
A hardware hypervisor (type 1) is ring -1, letting it control the guest

For type 2 hypervisors, the host has to create a virtual kernel and user mode



For type 2 hypervisors the guest runs on the host in user mode
Any privileged instructions generate a trap (wrong mode)

The hypervisor should explicitly handle this error
Emulate (or simulate) the operation for the guest and resume it

This will slow down the otherwise native execution

10



User Processes

Privileged Instruction

User Mode

Operating
System

Kernel Mode
Emulate Action — Update

1



Some CPUs are not clear between privileged and non-privileged instructions
This includes x86_64, virtual machines didn't exist in the 1970s

One example is the popf instruction, it loads the flags register from the stack
It behaves differently for both kernel and user mode

It does not generate a trap, so you can't trap-and-emulate
These special instructions need another approach

12



If the guest VCPU is in user mode, we can run instructions natively
in kernel mode, the hypervisor inspects every instruction before execution

Special instructions need to be translated to instructions with the same effect
Regular instructions can run natively

The kernel uses a CPU instruction to switch from user to kernel mode
The hypervisor can handle that using normal trap-and-emulate

Overall performance for type 2 hypervisors suffer, but they're adequate

13



User Processes

(VMM Reads Instructions)

Special Instruction

Operating User Mode

System

Kernel Mode
Translate
Execute Translation

— Update

14



In 2005 Intel introduced virtualization as VT-x and in 2006 AMD did as AMD-V
Intel's codename Vanderpool, published as Virtual Machine Extensions
(VMX)
AMD's codename Pacifica, published as Secure Virtual Machine (SVM)

This added the concept of ring -1, or hypervisor mode

The host kernel claims the hypervisor, and is the only one able to access it
It can set the isolation for the guests and what hardware to virtualize

15



If there is only one CPU on the physical machine, the guest will not know
The host could still present multiple virtual CPUs to the guest

We now need to map the VCPUs to physical CPUs, or schedule them like
processes
Like a normal kernel, there will also be hypervisor threads

16



If there are more physical cores on the host than all VCPUs, we can map 1:1
The host can continue using the spare physical cores

If we have to share, things get more complicated (called overcommitting)
At equal numbers we can still map 1:1, the hypervisor threads don't run

often
We have to use a scheduling algorithm, like we used for processes

17



The guest operating system runs too unpredictably for soft real-time tasks
It may be context switched out when the user process says not to

For example, consider a real-time round robin time slice is 10 ms
The guest will not have a consistent slice of 10 ms, it may be much higher

This may make processes miss deadlines they wouldn't have running on the
host
In this case virtualization has different observable behavior

18



Recall: virtual memory allows each process to think it has the entire address
space

Now the guest kernel thinks it's managing the entire physical address space
We have to virtualize that too!

The problem gets even worse if memory is overcommitted as well

19



The guest thinks it controls physical memory, and does page table
management

The hypervisor maintains a nested page table the re-translates for the guest
It translates the guest's page table to the real physical page table

For overcommitted memory the hypervisor can provide double-paging
The hypervisor does its own page replacement algorithm
However, the guest may know it's memory access patterns better

28



Similar to copy-on-write pages, we can get memory saves by sharing pages
This time instead of sharing between processes, share between guests

The hypervisor can do duplicate detection by hashing the contents of pages
If two hashes are the same, check they're the same byte-for-byte

If they're the same, we can share them until one of the guests try to write
Then we again do copy-on-write as before

21



The hypervisor can multiplex one device to multiple virtual machines
The hypervisor could also emulate devices that don't physically exist

The hypervisor could also map one physical device to a virtual device one VM
The VM has exclusive access to the device, but hypervisor still translates

There is a hardware solution to remove the hypervisor during run-time —
IOMMU
The hypervisor maps the devices virtual memory exclusively to the guest
The VM now actually has exclusive control over the device
This allows complex GPUs to work at native speeds in VMs

22



You create a disk image that has all the contents of a physical disk
It contains partitions, and each partition has a file system

Usually, it's one big file (but some formats allow you to split it up)
The guest kernel sees it has a normal disk, that it has full control of

The disk image is all you need for the virtual machine, makes it easy to move
The ova file you downloaded is basically a disk image and guest settings

23



Assume your application uses a dynamic library (back to Lecture 3)
An ABI change would cause your application to no longer work
Even more subtle, the library’s behavior could change

You may want to freeze your dependencies to deploy it in production
Create a virtual machine for it with all the libraries it needs

24



The hypervisor sets limits on: CPU time, memory, network bandwidth, etc.

What if the kernel supported this directly, without virtualization?

Linux control groups (cgroups) support hypervisor-like limits for processes
Isolate a process to a namespace

You can set other resources a namespace can access (mount points, IPC,
etc.)

Containers are lighter-weight than full virtual machines, they use a normal
kernel

25



They allow multiple operating systems to share the same hardware
¢ Virtual machines provide isolation, the hypervisor allocates resources

Type 2 hypervisors are slower due to trap-and-emulate and binary
translation

Type 1 hypervisors are supported by hardware, IOMMU speeds up devices
* Hypervisors may overcommit resources and need to physically move VM
e Containers aim to have the benefits of VMs, without the overhead

26



