
Basic IPC

2024 Fall ECE 344: Operating Systems

Jon Eyolfson

Lecture 6

2.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


IPC is Transferring Bytes BetweenTwo orMore Processes

Reading and writing files is a form of IPC

The read and write system calls allow any bytes

1



ASimple ProcessCouldWrite Everything It Reads

See: 06-basic-ipc/read-write-example.c

We read from standard in, and write to standard out

Does this remind you of any program you’ve seen before?

If we run it in our terminal without arguments, it’ll wait for input

Press Ctrl+D when you’re done to send end-of-file (EOF)

2



read Just Reads Data froma File Descriptor

See: man 2 read

There’s no EOF character, read just returns 0 bytes read

The kernel returns 0 on a closed file descriptor

We need to check for errors!

Save errno if you’re using another function that may set it

3



write JustWrites Data to a File Descriptor

See: man 2 write

It returns the number of bytes written, you can’t assume it’s always

successful

Save errno if you’re using another function that may set it

Both ends of the read and write have a corresponding write and read

This makes two communication channels with command line programs

4



The Standard File DescriptorsAre Powerful

We could close standard input (freeing file descriptor 0) and open a file

instead

Linux uses the lowest available file descriptor for new ones

See: lecture-06/open-example.c and man 2 open

Without changing the core code, it now works with multiple input types

You could type, or use a file

5



Your ShellWill Let You Redirect Standard File Descriptors

Instead of running ./open-example open-example.c we could run:

./open-example < open-example.c

Your shell will do the open for you and replace the standard input

We didn’t actually have to write that!

You could also redirect across multiple processes

cat open-example.c | ./open-example

6



Signals are a Formof IPC that Interrupts

You could also press Ctrl+C to stop ./open-example

This interrupts your programs execution and exits early

Kernel sends a number to your program indicating the type of signal

Kernel default handlers either ignore the signal or terminate your process

Ctrl+C sends SIGINT (interrupt from keyboard)

If the default handler occurs the exit code will be 128 + signal number

7



YouCan Set Your OwnSignal Handlerswith sigaction

See: 06-basic-ipc/signal-example.c and man 2 sigaction

You just declare a function that doesn’t return a value, and has an int

argument

The integer is the signal number

Some numbers are non-standard, below are a few from Linux x86-64:

• 2: SIGINT (interrupt from keyboard)

• 9: SIGKILL (terminate immediately)

• 11: SIGSEGV (memory access violation)

• 15: SIGTERM (terminate)

8



ASignal PausesYour Process and Runs the Signal Handler

Your process can be interrupted at any point in execution

Your process resumes after the signal handler finishes

This is an example of concurrency, your process switches execution

You have to be careful what you write here

Run ./signal-example and press Ctrl+C

9



YouNeed toAccount for Interrupted SystemCalls

You should see:

Ignoring signal 2

read: Interrupted system call

We can rewrite it to retry interrupted system calls

See: 06-basic-ipc/signal-example-2.c

Now the program continues when we press Ctrl+C

10



YouCan Send Signals to Processeswith Their PID

You can use the command: kill

It is also a system call, taking a pid and signal number

Find a processes’ ID with pidof, e.g. pidof ./signal-example-2

After use kill <pid>, which by default sends SIGTERM

Use kill -9 <pid> to tell the kernel to terminate the process

Process won’t terminate if it’s in uninterruptible sleep

11



Most OperationsAreNon-Blocking

A non-blocking call returns immediately, and you check if something occurs

To turn wait into a non-blocking call, use waitpid with WNOHANG in options

To react to changes to a non-blocking call, we can either use a poll or

interrupt

12



Polling Continuously Calls the Function andChecks for

Changes

See: 06-basic-ipc/wait-poll-example.c

We call waitpid over and over until the child exits

Note: some hardware behaves like this,

the kernel may have to check for changes

What’s the drawback of this approach?

13



An Interrupt InsteadOccurs Right After the Change

See: 06-basic-ipc/wait-interrupt-example.c

Instead of calling wait or waitpid from main, we can do it in the interrupt

handler

The kernel sends the SIGCHLD whenever one of its children exit

This idea also applies to the kernel, hardware can generate interrupts

14



Interrupt Handlers Run to Completion

See: 06-basic-ipc/signal-close-example.c

An interrupt may occur while an interrupt handler is already running

All interrupt handler code must be reentrant

You need to be able to pause execution,

execute another call (to the same function),

and resume execution

15



On a RISC-VCPU,There’s 3 Terms for “Interrupts”

Interrupt

Triggered by external hardware,

handled by the kernel (needs to respond quickly)

Exception

Triggered by an instruction (divide by zero, illegal memory access),

default handler is the kernel (calling process suspended),

the process can optionally handle some of these themselves

Trap

Transfer of control to a trap handler caused by either

an exception or an interrupt (code that runs)

A system call would be a requested trap

16



WeExplored Basic IPC in anOperating System

Some basic IPC includes:

• read and write through file descriptors (could be a regular file)

• Redirecting file descriptors for communcation

• Signals

Signals are like interrupts for user processes

The kernel has to handle all 3 kinds of “interrupts”

17


