
Basic Scheduling

2024 Fall ECE 344: Operating Systems

Jon Eyolfson

Lecture 9

2.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


There are Preemptible andNon-preemptible Resources

A preemptible resource can be taken away and used for something else

e.g. a CPU

The resource is shared through scheduling

A non-preemptible resource can not be taken away without acknowledgment

e.g. disk space

The resource is shared through allocations and deallocations

Note: Parallel and distributed systems may allow you to allocate a CPU

1



ADispatcher and SchedulerWork Together

A dispatcher is a low-level mechanism

Responsible for context switching

A scheduler is a high-level policy

Responsible for deciding which processes to run

2



The Scheduler RunsWhenever a ProcessChanges State

First let’s consider non-preemptable processes

Once the process starts, it runs until completion

In this case, the scheduler will only make a decision when the process

terminates

Preemptive allows the operating system to run the scheduler at will

Check uname -v, your kernel should tell you it’s preemptable

3



Metrics

Minimize waiting time and response time

Don’t have a process waiting too long (or too long to start)

Maximize CPU utilization

Don’t have the CPU idle

Maximize throughput

Complete as many processes as possible

Fairness

Try to give each process the same percentage of the CPU

4



First Come First Served (FCFS)

The most basic form of scheduling

The first process that arrives gets the CPU

Processes are stored in a FIFO queue in arrival order

5



AGantt Chart Illustrates the Schedule

Consider the following processes:

Process Arrival Time Burst Time

P1 0 7

P2 0 4

P3 0 1

P4 0 4

Assume, P1 → P2 → P3 → P4. For FCFS, our schedule is:

0 7 11 12 16

P1 P2

P3

P4

What is the average waiting time?

6



What Happens toOurWaiting Timewith a Different Arrival

Order

Consider the same processes:

Process Arrival Time Burst Time

P1 0 7

P2 0 4

P3 0 1

P4 0 4

Assume, P3 → P2 → P4 → P1. For FCFS, our schedule is:

0 1 5 9 16

P3

P1P2 P4

What is the average waiting time now?

7



Shortest Job First (SJF)

A slight tweak to FCFS, we always schedule the job with the shortest burst

time first

We’re still assuming no preemption

8



SJFMinimizes theAverageWait Time over FCFS

Consider the same processes with different arrival times:

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

For SJF, our schedule is (arrival on top):

0 2 4 5 7 8 12 16

P1 P2

P3

P4

P1 P2 P3 P4

Average waiting time:
0+6+3+7

4
= 4

9



SJF is Not Practical

It is provably optimal at minimizing average wait time (if no preemption)

You will not know the burst times of each process

You could use the past to predict future executions

You may starve long jobs (they may never execute)

10



Shortest Remaining Time First (SRTF)

Changing SJF to run with preemptions requires another tweak

We’ll assume that our minimum execution time is one unit

Similar to SJF, this optimizes the average waiting time

11



SRTF Reduces theAverageWait TimeCompared to SJF

Consider the same processes and arrival times as SJF:

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

For SRTF, our schedule is (arrival on top):

0 2 4 5 7 11

P1 P2

P3

P2 P4 P1

P1 P2 P3 P4

Average waiting time:
9+1+0+2

4
= 3

12



Round-Robin (RR)

So far we haven’t handled fairness (it’s a trade off with other metrics)

The operating system divides execution into time slices (or quanta)

An individual time slice is called a quantum

Maintain a FIFO queue of processes similar to FCFS

Preempt if still running at end of quantum and re-add to queue

What are practical considerations for determining quantum length?

13



RRwith aQuantumLength of 3 Units

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

For RR, our schedule is (arrival on top, queue on bottom):

0 2 3 4 5 6 9 10 13 14 15

P1 P2 P1

P3

P4

P2 P1 P4

P1 P2 P3 P4

P1 P2 P2

P1

P1

P3

P1

P3

P4

P1

P3

P4

P2

P3

P4

P2

P1

P4

P2

P1

P2

P1

P4

P1

P4

P4

14



Metrics for RR (3 Unit QuantumLength)

Number of context switches: 7

Average waiting time:
8+8+5+7

4
= 7

Average response time:
0+1+5+5

4
= 2.75

Note: on ties (a new process arrives while one is preempted), favor the new

one

15



RRwith aQuantumLength of 1 Units

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

For RR, our schedule is (arrival on top, queue on bottom):

0 2 4 5

P1

P2 P1 P2 P3 P1 P4 P2 P1 P4 P2 P1 P4 P1 P4

P1 P2 P3 P4

P1 P1 P2

P1

P1

P2

P2

P3

P1

P3

P1

P4

P2

P1

P4

P2

P4

P2

P1

P2

P1

P4

P1

P4

P2

P4

P2

P1

P2

P1

P4

P1

P4

P4

P1

P1

P4

P4

16



Metrics for RR (1 Unit QuantumLength)

Number of context switches: 14

Average waiting time:
8+6+1+7

4
= 5.5

Average response time:
0+0+1+2

4
= 0.75

17



RRwith aQuantumLength of 10 Units

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

For RR, our schedule is (arrival on top, queue on bottom):

0 2 4 5 7 11 12 16

P1 P2 P3 P4

P1 P2 P2

P3

P2

P3

P4

P3

P4

P4

P1 P2

P3

P4

18



Metrics for RR (10 Unit QuantumLength)

Number of context switches: 3

Average waiting time:
0+5+7+7

4
= 4.75

Average response time:
0+5+7+7

4
= 4.75

Note: in this case it’s the same as FCFS without preemptions

19



RR PerformanceDepends onQuantumLength and Job

Length

RR has low response good interactivity

Fair allocation of CPU

Low average waiting time (when job lengths vary)

The performance depends on the quantum length

Too high and it becomes FCFS

Too low and there’s too many context switches (overhead)

RR has poor average waiting time when jobs have similar lengths

20



Scheduling Involves Trade-Offs

We looked at few different algorithms:

• First Come First Served (FCFS) is the most basic scheduling algorithm

• Shortest Job First (SJF) is a tweak that reduces waiting time

• Shortest Remaining Time First (SRTF) uses SJF ideas with preemptions

• SRTF optimizes lowest waiting time (or turnaround time)

• Round-robin (RR) optimizes fairness and response time

21


