ECE 353: Systems Software

Lecture 14

Page Tables
 1.2.0

Jon Eyolfson
February 8, 2023
©(®)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Multi-Level Page Tables Save Space for Sparse Allocations

© MIT https://github.com/mit-pdos/xv6-riscv-book/

Page Allocation Uses A Free List

Given physical pages, the operating system maintains a free list (linked list)

The unused pages themselves contain the next pointer in the free list Physical memory gets initialized at boot

To allocate a page, you remove it from the free list
To deallocate a page you add it back to the free list

Insight: Use a Page for Each Smaller Page Table

There are $512\left(2^{9}\right)$ entries of 8 bytes $\left(2^{3}\right)$ each, which is 4096 bytes

The PTE for $L(N)$ points to the page table for $L(N-1)$

You follow these page tables until LO and that contains the PPN

The Smaller Page Tables are Just Like Arrays

```
Instead of:
    int page_table[512] // What's the size of this?
or
    x = page_table[2] // What's the offset of index 2?
You have:
    PTE page_table[512]
where:
    sizeof(page_table) = PAGE_SIZE
and
    sizeof(page_table) = number of entries * sizeof(PTE)
```


Consider Just One Additional Level

Assume our process uses just one virtual address at 0x3FFFF008
or 0b11_1111_1111_1111_1111_8000_8000_1000
or 0b111111111_111111111_000000001000

We'll just consider a 30-bit virtual address with a page size of 4096 bytes We would need a 2 MiB page table if we only had one $\left(2^{18} \times 2^{3}\right)$

Instead we have a 4 KiB L1 page table $\left(2^{9} \times 2^{3}\right)$ and a 4 KiB LO page table Total of 8 KiB instead of 2 MiB

Note: worst case if we used all virtual addresses we would consume $2 \mathrm{MiB}+4 \mathrm{KiB}$

Translating 3FFFF008 with 2 Page Tables

Consider the L1 table with the entry:

Index	PPN
511	0×8

Consider the L0 table located at 0×8000 with the entry:
Index PPN
511 0xCAFE

The final translated physical address would be: 0xCAFE008

