
Lecture 15
ECE 353: Systems Software

Page Table Implementation
1.1.0

Jon Eyolfson
February 9, 2023

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

cba

http://creativecommons.org/licenses/by-sa/4.0/


Processes Use A Register Like satp to Set the Root Page Table

 

Physical Page Number

6

A

5 4 3

U

2

W

1

V

07891063

V
R
W
X
U

A
D

- Valid
- Readable
- Writable
- Executable
- User

- Accessed
- Dirty (0 in page directory)

Virtual address Physical Address
129

L1 L0 Offset

12

PPN Offset

PPN Flags

0

1

10

Page Directory

satp

L2

PPN Flags

0

1

44 10

Page Directory

PPN Flags

0

1

511
10

Page Directory

99

EXT
9

511

511

44

44

44

D U X RG

A - Accessed
-G - Global

RSW

Reserved for supervisor software

53

Reserved

© MIT https://github.com/mit-pdos/xv6-riscv-book/
1

https://github.com/mit-pdos/xv6-riscv-book/


Alignment: Memory Eventually Lines Upwith Byte 0

If pages are 4096 byte aligned in memory is means pages always start when the
lower 12 bits are zero, in computing we like alignment

If a page started at address 0x7C00 its last byte would be at address 0x8BFF

Instead a page would start at 0x7000 and end at 0x7FFF

Question: Is address 0xEC 8 byte aligned?

2



Let’s Simulate anMMU

14-page-tables in your examples repository

Remember each process would have it’s own unique root page table

3



HowMany Page Tables DoWeNeed?

Let’s assume our program uses 512 pages

What’s the minimum number of page tables we need?

What’s the maximum number of page tables?

4



HowMany Levels Do I Need?

Assume we have a 32-bit virtual address with a page size of 4096 bytes
and a PTE size of 4 bytes

We want each page table to fit into a single page
Find the number of PTEs we could have in a page (210)

log2(#PTEs per Page) is the number of bits to index a page table

#Levels = ⌈Virtual Bits−Offset BitsIndex Bits ⌉

#Levels = ⌈32−1210 ⌉ = 2

5



HowMany Levels Do I Need?

Assume we have a 32-bit virtual address with a page size of 4096 bytes
and a PTE size of 4 bytes

We want each page table to fit into a single page
Find the number of PTEs we could have in a page (210)

log2(#PTEs per Page) is the number of bits to index a page table

#Levels = ⌈Virtual Bits−Offset BitsIndex Bits ⌉

#Levels = ⌈32−1210 ⌉ = 2

5



Using the Page Tables for EveryMemory Access is Slow

We need to follow pointers across multiple levels of page tables!

We’ll likely access the same page multiple times (close to the first access time)

A process may only need a few VPN→ PPN mappings at a time

Our solution is another computer science classic: caching

6



ATranslation Look-Aside Buffer (TLB) Caches Virtual Addresses

“Working flow of a TLB” by Aravind Krishna is licensed under CC BY-SA 4.0 7



Wepaused here on Thursday Feb 9

8



Effective Access Time (EAT)

Assume a single page table (there’s only one additional memory access in the page
table)

TLB_Hit_Time = TLB_Search+ Mem
TLB_Miss_Time = TLB_Search+ 2× Mem
EAT = α× TLB_Hit_Time+ (1− α)× TLB_Miss_Time

If α = 0.8, TLB_Search = 10 ns, and memory accesses take 100 ns, calculate EAT
EAT = 0.8× 110 ns+ 0.2× 210 ns
EAT = 130 ns

9



Context Switches Require Handling the TLB

You can either flush the cache, or attach a process ID to the TLB

Most implementation just flush the TLB
RISC-V uses a sfence.vma instruction to flush the TLB

On x86 loading the base page table will also flush the TLB

10



TLB Testing

Check out 15-page-table-implementation/test-tlb
(you may need to git submodule update --init --recursive)

./test-tlb <size> <stride>
Creates a <size> memory allocation and acccesses it every <stride> bytes

Results from my laptop:

> ./test -tlb 4096 4
1.93ns (~7.5 cycles)

> ./test -tlb 536870912 4096
155.51 ns (~606.5 cycles)
> ./test -tlb 16777216 128
14.78ns (~57.6 cycles)

11



Use sbrk for Userspace Allocation

This call grows or shrinks your heap (the stack has a set limit)

For growing, it’ll grab pages from the free list to fulfill the request
The kernel sets PTE_V (valid) and other permissions

In memory allocators this is difficult to use, you’ll rarely shrink the heap
It’ll stay claimed by the process, and the kernel cannot free pages

Memory allocators use mmap to bring in large blocks of virtual memory

12



The Kernel Initializes the Processs’ Address Space (and Stack)

0

MAXVA

text

data

stack

heap

PAGESIZE

argument 0

argument N
0

address of argument N

address of argument 0
address of address of
 argument 0

0xFFFFFFF

(empty)

argc

...

...

nul-terminated string
argv[argc]

argv[0]

argv argument of main

argc argument of main
return PC for main

guard page

stack

trampoline
trapframe

© MIT https://github.com/mit-pdos/xv6-riscv-book/

The guard page will generate an exception if accessed meaning stack overflow 13

https://github.com/mit-pdos/xv6-riscv-book/


The Kernel Can Provide Fixed Virtual Addresses

It allows the process to access kernel data without using a system call

For instance clock_gettime does not do a system call
It just reads from a virtual address mapped by the kernel

14



Page Faults Allow the Operating System to Handle Virtual Memory

Page faults are a type of exception for virtual memory access
Generated if it cannot find a translation, or permission check fails

This allows the operating system to handle it
We could lazily allocate pages, implement copy-on-write, or swap to disk

15



Page Tables Translate Virtual to Physical Addresses

The MMU is the hardware that uses page tables, which may:
• Be a single large table (wasteful, even for 32-bit machines)
• Use the kernel allocated pages from a free list
• Be a multi-level to save space for sparse allocations
• Use a TLB to speed up memory accesses

16


