
Lecture 18
ECE 353: Systems Software

MidtermWrap-up
1.0.0

Jon Eyolfson
February 16, 2023

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

cba

http://creativecommons.org/licenses/by-sa/4.0/


Effective Access Time (EAT)

Assume a single page table (there’s only one additional memory access in the page
table)

TLB_Hit_Time = TLB_Search+ Mem
TLB_Miss_Time = TLB_Search+ 2× Mem
EAT = α× TLB_Hit_Time+ (1− α)× TLB_Miss_Time

If α = 0.8, TLB_Search = 10 ns, and memory accesses take 100 ns, calculate EAT
EAT = 0.8× 110 ns+ 0.2× 210 ns
EAT = 130 ns

1



Context Switches Require Handling the TLB

You can either flush the cache, or attach a process ID to the TLB

Most implementation just flush the TLB
RISC-V uses a sfence.vma instruction to flush the TLB

On x86 loading the base page table will also flush the TLB

2



TLB Testing

Check out 15-page-table-implementation/test-tlb
(you may need to git submodule update --init --recursive)

./test-tlb <size> <stride>
Creates a <size> memory allocation and acccesses it every <stride> bytes

Results from my laptop:

> ./test -tlb 4096 4
1.93ns (~7.5 cycles)

> ./test -tlb 536870912 4096
155.51 ns (~606.5 cycles)
> ./test -tlb 16777216 128
14.78ns (~57.6 cycles)

3



Use sbrk for Userspace Allocation

This call grows or shrinks your heap (the stack has a set limit)

For growing, it’ll grab pages from the free list to fulfill the request
The kernel sets PTE_V (valid) and other permissions

In memory allocators this is difficult to use, you’ll rarely shrink the heap
It’ll stay claimed by the process, and the kernel cannot free pages

Memory allocators use mmap to bring in large blocks of virtual memory

4



The Kernel Initializes the Processs’ Address Space (and Stack)

0

MAXVA

text

data

stack

heap

PAGESIZE

argument 0

argument N
0

address of argument N

address of argument 0
address of address of
 argument 0

0xFFFFFFF

(empty)

argc

...

...

nul-terminated string
argv[argc]

argv[0]

argv argument of main

argc argument of main
return PC for main

guard page

stack

trampoline
trapframe

© MIT https://github.com/mit-pdos/xv6-riscv-book/

The guard page will generate an exception if accessed meaning stack overflow 5

https://github.com/mit-pdos/xv6-riscv-book/


The Kernel Can Provide Fixed Virtual Addresses

It allows the process to access kernel data without using a system call

For instance clock_gettime does not do a system call
It just reads from a virtual address mapped by the kernel

6



Page Faults Allow the Operating System to Handle Virtual Memory

Page faults are a type of exception for virtual memory access
Generated if it cannot find a translation, or permission check fails

This allows the operating system to handle it
We could lazily allocate pages, implement copy-on-write, or swap to disk

7



Page Tables Translate Virtual to Physical Addresses

The MMU is the hardware that uses page tables, which may:
• Be a single large table (wasteful, even for 32-bit machines)
• Use the kernel allocated pages from a free list
• Be a multi-level to save space for sparse allocations
• Use a TLB to speed up memory accesses

8



TheMidtermCovers Topics Up to and Including Today

However, threads will not be on the midterm

Expect a similar style to the midterm we saw in class

9



You’ll Want to Use ucontext.h and sys/queue.h in Lab 3

See 18-midterm-wrap-up in examples

The important struct is ucontext_t, it holds all register values

It also contains some additional infomration, like the stack address

This is live in class, feel free to experiment!

10


