Page Tables

2024 Winter ECE 353: Systems Software Jon Eyolfson

Lecture 12
2.0.0

What Should We Do About the Page Table Size?

Most programs don't use all the virtual memory space, how can we take advantage?

We Can Make Our Page Table Fit on a Page

Multi-Level Page Tables Save Space for Sparse Allocations

Page Allocation Uses A Free List

Given physical pages, the operating system maintains a free list (linked list)
The unused pages themselves contain the next pointer in the free list Physical memory gets initialized at boot

To allocate a page, you remove it from the free list
To deallocate a page you add it back to the free list

Insight: Use a Page for Each Smaller Page Table

There are $512\left(2^{9}\right)$ entries of 8 bytes $\left(2^{3}\right)$ each, which is 4096 bytes
The PTE for $\mathrm{L}(\mathrm{N})$ points to the page table for $\mathrm{L}(\mathrm{N}-1)$
You follow these page tables until LO and that contains the PPN

The Smaller Page Tables are Just Like Arrays

Instead of:
int page_table[512] // What's the size of this?
or

```
x = page_table[2]; // What's the offset of index 2?
```

You have:
PTE page_table[512]
where:
sizeof(page_table) $==$ PAGE_SIZE
and
sizeof(page_table) $=$ number of entries * sizeof(PTE)

Consider Just One Additional Level

Assume our process uses just one virtual address at 0x3FFFF008 or 0b11_1111_1111_1111_1111_0000_0000_1000 or Ob111111111_111111111_000000001000

We'll just consider a 30-bit virtual address with a page size of 4096 bytes We would need a 2 MiB page table if we only had one $\left(2^{18} \times 2^{3}\right)$

Instead, we have a 4 KiB L1 page table $\left(2^{9} \times 2^{3}\right)$ and a 4 KiB L0 page table Total of 8 KiB instead of 2 MiB

Note: worst case if we used all virtual addresses we would consume $2 \mathrm{MiB}+$ 4 KiB

Translating 3FFFF008 with 2 Page Tables

Consider the L1 table with the entry:

Index	PPN
511	0×8

Consider the L0 table located at 0×8000 with the entry:
Index PPN

511 DxCAFE
The final translated physical address would be: 0xCAFEOO8

