
Page Table
Implementation

2024 Winter ECE 353 Systems Software
Jon Eyolfson

Lecture 13
2.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


ProcessesUseARegister Like satp to Set theRoot PageTable

1



Alignment: Memory Eventually Lines Upwith Byte 0

If pages are 4096 byte aligned in memory is means pages always start when
the lower 12 bits are zero, in computing we like alignment

If a page started at address 0x7C00 its last byte would be at address 0x8BFF
Instead, a page would start at 0x7000 and end at 0x7FFF

Question: Is address 0xEC 8 byte aligned?

2



Let’s Simulate anMMU

lectures/12-page-tables in the materials repository
Remember each process would have its own unique root page table

3



HowMany Page Tables DoWeNeed?

Let’s assume our program uses 512 pages

What’s the minimum number of page tables we need?

What’s the maximum number of page tables?

4



HowMany Levels Do I Need?

Assume we have a 32-bit virtual address with a page size of 4096 bytes
and a PTE size of 4 bytes

We want each page table to fit into a single page
Find the number of PTEs we could have in a page (210)
log2(#PTEs per Page) is the number of bits to index a page table

#Levels = ⌈Virtual Bits−Offset BitsIndex Bits ⌉

#Levels = ⌈32−1210 ⌉ = 2

5



HowMany Levels Do I Need?

Assume we have a 32-bit virtual address with a page size of 4096 bytes
and a PTE size of 4 bytes

We want each page table to fit into a single page
Find the number of PTEs we could have in a page (210)
log2(#PTEs per Page) is the number of bits to index a page table

#Levels = ⌈Virtual Bits−Offset BitsIndex Bits ⌉

#Levels = ⌈32−1210 ⌉ = 2

5



Using the Page Tables for EveryMemoryAccess is Slow

We need to follow pointers across multiple levels of page tables!

We’ll likely access the same page multiple times
(close to the first access time)

A process may only need a few VPN→ PPN mappings at a time

Our solution is another computer science classic: caching

6



ATranslation Look-Aside Buffer TLB Caches PTEs

7



EffectiveAccess Time EAT

Assume a single page table
(there’s only one additional memory access in the page table)

TLB_Hit_Time = TLB_Search+Mem
TLB_Miss_Time = TLB_Search+ 2×Mem
EAT = α× TLB_Hit_Time+ (1− α)× TLB_Miss_Time

If α = 0.8, TLB_Search = 10 ns, and accesses take 100 ns, calculate EAT
EAT = 0.8× 110 ns+ 0.2× 210 ns
EAT = 130 ns

8



Context Switches Require Handling the TLB

You can either flush the cache, or attach a process ID to the TLB

Most implementation just flush the TLB
RISCV uses a sfence.vma instruction to flush the TLB

On x86 loading the base page table will also flush the TLB

9



TLBTesting

Check out lectures/13-page-table-implementation/test-tlb
(you may need to git submodule update --init --recursive)

./test-tlb <size> <stride>
Creates a <size> memory allocation and acccesses it every <stride> bytes

Results from my laptop:
> ./test-tlb 4096 4

1.93ns (~7.5 cycles)
> ./test-tlb 536870912 4096
155.51ns (~606.5 cycles)
> ./test-tlb 16777216 128
14.78ns (~57.6 cycles)

10



Use sbrk for UserspaceAllocation
This call grows or shrinks your heap (the stack has a set limit)

For growing, it’ll grab pages from the free list to fulfill the request
The kernel sets PTE_V (valid) and other permissions

In memory allocators this is difficult to use, you’ll rarely shrink the heap
It’ll stay claimed by the process, and the kernel cannot free pages

Memory allocators use mmap to bring in large blocks of virtual memory

11



TheKernel Initializes the Processs’ Address Space

12



TheKernel Can Provide FixedVirtual Addresses

It allows the process to access kernel data without using a system call

For instance clock_gettime does not do a system call
It just reads from a virtual address mapped by the kernel

13



Page Faults Allow theOperating System toHandleVirtual
Memory

Page faults are a type of exception for virtual memory access
Generated if it cannot find a translation, or permission check fails

This allows the operating system to handle it
We could lazily allocate pages, implement copy-on-write, or swap to disk

14



Page Tables TranslateVirtual to Physical Addresses

The MMU is the hardware that uses page tables, which may:
• Be a single large table (wasteful, even for 32-bit machines)
• Use the kernel allocated pages from a free list
• Be a multi-level to save space for sparse allocations
• Use a TLB to speed up memory accesses

15


