
Process Creation

2024 Winter ECE 353 Systems Software
Jon Eyolfson

Lecture 4
2.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


Recall: A Process is an Instance of a Running Program

1



WeCanAddMore to a Process

2



AProcessControl Block PCB ContainsAll Information

Specifically, in Linux, this is the task_struct you can browse on
GitHub

It contains:
• Process state
• CPU registers
• Scheduling information
• Memory management information
• I/O status information
• Any other type of accounting information

Each process gets a unique process ID (pid) to keep track of it

3

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L743


Process State Diagram YouCould RenameWaiting to Ready)

Createdstart Waiting

Running

Blocked

Terminated

4



YouCan Read Process State Using the “proc” Filesystem

There’s a standard /proc directory (on Linux) that represents the kernel’s state
These aren’t real files, they just look like it!

Every directory that’s a number (process ID in /proc represents a process
There’s a file called status that contains the state (used for Lab 1

5



WeCould Create Processes fromScratch

We load the program into memory and create the process control block
(this is what Windows does)

Unix decomposes process creation into more flexible abstractions

6



Instead of Creating aNewProcess,WeCould Clone It

Pause the currently running process, and copy it’s PCB into a new one
This will reuse all of the information from the process, including variables!

Distinguish between the two processes with a parent and child relationship
They could both execute different parts of the program together

We could then allow either process to load a new program and setup a new
PCB

7



forkCreates aNewProcess, ACopy of theCurrent One

int fork(void) as the following API
• Returns the process ID of the newly created child process

1 on failure
0 in the child process
0 in the parent process

There are now 2 processes running
Note: they can access the same variables, but they’re separate
Operating system does “copy on write” to maximize sharing

8



OnPOSIX Systems, YouCan Find Documentation Using man
We’ll be using the following APIs:
• fork
• execve
• wait (next lecture)
You can use man <function> to look up documentation,
or man <number> <function>
2 System calls
3 Library calls

9



fork-example.cHasOne Process Execute Each Branch
int main(int argc, char *argv[]) {

pid_t returned_pid = fork();
if (retured_pid == -1) {
int err = errno;
perror("fork failed");
return err;

}
if (returned_pid == 0) {

printf("Child returned pid: %d\n", returned_pid);
printf("Child pid: %d\n", getpid());
printf("Child parent pid: %d\n", getppid());

}
else {

printf("Parent returned pid: %d\n", returned_pid);
printf("Parent pid: %d\n", getpid());
printf("Parent parent pid: %d\n", getppid());

}
return 0;

} 10



execveReplaces the ProcesswithAnother Program, and
Resets

execve has the following API
• pathname: Full path of the program to load
• argv: Array of strings (array of characters), terminated by a null pointer

Represents arguments to the process
• envp: Same as argv

Represents the environment of the process
• Returns an error on failure, does not return if successful

11



execve-example.cTurns the Process into ls
int main(int argc, char *argv[]) {

printf("I'm going to become another process\n");
char *exec_argv[] = {"ls", NULL};
char *exec_envp[] = {NULL};
int exec_return = execve("/usr/bin/ls", exec_argv, exec_envp);
if (exec_return == -1) {

exec_return = errno;
perror("execve failed");
return exec_return;

}
printf("If execve worked, this will never print\n");
return 0;

}

12



TheOperating SystemCreates Processes

The operating system has to:
• Maintain process control blocks, including state
• Create new processes
• Load a program, and re-initialize a process with context

13


