
Jon Eyolfson

Courtesy: Ashvin Goel

ECE Dept, University of Toronto

ECE 454

Computer Systems Programming

Modern Allocators, Garbage Collectors

Contents

• Introduction to dynamic memory management

• Alignment

• Memory management API

• Constraints, goals

• Fragmentation

• Basic dynamic memory allocation

• Implicit free list

• Explicit free list

• Segregated free lists / Buddy allocation

• Modern allocators

• Garbage collectors

• Application-Aware allocators
2

Case Study 1: phkmalloc

• Poul-Henning Kamp, The FreeBSD project,

“Malloc(3) revisited”, Usenix ATC 1998

• Please read for details

• Argues that key performance goal of malloc should be to

minimize the number of pages accessed

• Helps improve locality, specially when the working set of

programs is large, close to available physical memory

3

Problem with Existing Malloc

• Information about free chunks is kept in free chunks

• Even if application doesn’t need this memory, malloc needs it

• Even if OS pages out the free chunk pages, malloc will page them in

when it traverses the free list

• Malloc allocations do not work in pages

• Allocations may span pages even when object size < page size

• Such objects may require paging in two pages and two TLB entries

4

Phkmalloc Design

• phkmalloc ensures that malloc metadata is kept separately

• Use separate mmap area for contiguous malloc metadata

• Use malloc itself for dynamically allocated malloc metadata!

• Uses a two-level allocator

• Large allocations performed at page granularity

• For allocations greater than half page size

• Small allocations performed at sub-page granularity within page

• For allocations smaller than half page size

• Similar to simple segregated storage

• All allocation requests are rounded to next power of 2

• Keeps several lists of different fixed sizes

5

Phkmalloc Page Allocator

6

page directory: one entry (size: void *) per pageHeader

heap start heap end

Phkmalloc Page Allocator

7
heap start heap endone or multi-page allocations

S: Start page

F: follow page

page directory: one entry per pageHeader

Phkmalloc Page Allocator

8

free list: one entry per page run

S: Start page

F: follow page

heap start heap end

page directory: one entry per pageHeader

one or multi-page allocations

Page Allocator Design

• p = allocate(n pages)

• Look up free list and find first run of free pages >= n pages

• Update free list, page directory with S, F flags

• If n contiguous pages not available

• Grow heap

• Reallocate contiguous page directory using mmap

• free(p)

• Look up page in page directory, in constant time

• Use S, F flags to determine size of page run, update page directory

• Add page run to free list in address order, with coalescing

• Why use two structures, page directory and free list?

9

Phkmalloc Sub-Page Allocator

10

heap start heap end
sub-page allocations for

32 byte chunks

struct

pginfo

Header page directory: one entry per page

Phkmalloc Sub-Page Allocator

11

heap start heap end
sub-page allocations for 32 byte

chunks

struct

pginfo

Header page directory: one entry per page

Phkmalloc Sub-Page Allocator

12

returned

chunk

struct

pginfo

allocate(32 bytes):

1. If linked list is empty,

allocate new page and pginfo

2. Use bitmap to find free

chunk in first pginfo in

linked list, update bitmap

3. If all chunks allocated,

remove pginfo from linked

list

Header page directory: one entry per page

How to Allocate from a

Bit Vector?

13

>man ffs

ffs(3) Library Functions Manual ffs(3)

NAME

 ffs, ffsl, ffsll - find first bit set in a word

LIBRARY

 Standard C library (libc, -lc)

SYNOPSIS

 #include <strings.h>

 int ffs(int i);

 #include <string.h>

.....

ESCRIPTION

 The ffs() function returns the position of the first (least significant) bit set

 in the word i. The least significant bit is position 1 and the most significant

 position is, for example, 32 or 64. The functions ffsll() and ffsl() do the same

 but take arguments of possibly different size.

RETURN VALUE

 These functions return the position of the first bit set, or 0 if no bits are set

 in i.

Phkmalloc Sub-Page Allocator

14

struct

pginfo

Header page directory: one entry per page

free(chunk):

1. Find pginfo associated with

chunk, update bitmap

2. If this is first free chunk

in page, add pginfo into

linked list

3. If all chunks free, remove

pginfo from linked list,

free it, free page

chunk

Phkmalloc Sub-Page Allocator

15

heap start heap end

page directory: one entry per pageHeader

struct

pginfo

sub-page allocations for 64

byte chunks

Phkmalloc Sub-Page Allocator

16

heap start heap end

page directory: one entry per pageHeader

linked lists of struct pginfo

kept in sorted address order

struct

pginfo

sub-page allocations for

64 byte chunks

Phkmalloc Summary

• Two level design for page-level and sub-page level allocations

• Linked list for multi-page allocation

• Simple and works well since large allocations are less frequent

• Power of 2, segregated storage for sub-page level allocation

• Almost constant time allocation, free

• Low space overhead (for page header)

• No splitting, coalescing overhead

• Comparison with simple segregated storage

• Internal fragmentation is similar, due to rounding to power of 2

• Phkmalloc reduces external fragmentation by 1) returning empty chunk

pages, 2) preferring low addresses for allocation

17

Implicit Memory

Management:

Garbage Collection

18

Drawback of Malloc and Free

• Malloc and Free require explicit memory management

• Programmers need to keep track of allocated memory and explicitly

deallocate blocks that are no longer needed

• Disadvantage

• Programming burden

• Walking the entire data structure graph

• Highly error-prone

• Especially when considering quality of most programmers!

• Problems

• Dangling pointer bugs

• Double free bugs

• Memory leaks
19

Garbage Collection

• Garbage collection: automatic reclamation of heap-allocated storage –

application does not have to explicitly free memory

• Common in functional languages, scripting languages, and modern object-

oriented languages:

• Lisp, ML, Java, Perl, Python, Matlab, etc.

• Variants (conservative garbage collectors) exist for C and C++

• Cannot collect all garbage

20

void foo() {
 int *p = malloc(128);
 return; /* p block is now garbage */
}

Garbage Collection

• How does the memory manager know when memory can be freed?

• Unless you know the future

• But we can tell memory blocks impossible to access: garbage = blocks no

pointer points to them (in transitive sense)

• Need to make certain assumptions about pointers

• Memory manager can distinguish pointers from non-pointers

• All pointers point to the start of a block

• Size of allocated blocks can be determined

• Cannot hide pointers (e.g., by coercing them to an integer, and then back

again)

• These can be trivially imposed by programming languages

21

Classic GC algorithms

• Mark and sweep collection (McCarthy, 1960)

• Does not move blocks

• Reference counting (Collins, 1960)

• Does not move blocks

• Mark and copy collection (Minsky, 1963)

• Moves and compacts blocks (not discussed)

• For more information, see Jones and Lin, “Garbage Collection: Algorithms

for Automatic Dynamic Memory”, John Wiley & Sons, 1996.

22

Memory as a Graph

• We view memory as a directed graph

• Each block is a node in the graph

• Each pointer is an edge in the graph

• Locations not in the heap that contain pointers into the heap are

called root nodes (e.g. registers, local variables = locations on the

stack, global variables)

23

Memory as a Graph

• A node (block) is reachable if there is a path from any root to that node

• Non-reachable nodes are garbage since they cannot be accessed by the

application

24

Root nodes

Heap nodes

not-reachable

(garbage)

reachable

Mark and Sweep Collection

• Can build on top of malloc/free package

• Allocate using malloc until you “run out of space”

• When out of space:

• Keep extra mark bit in the head of each block

• Mark: Start at roots and set mark bit on all reachable memory

• Sweep: Scan all blocks; free the blocks that are not marked

25

Mark and Sweep Example

26

Before mark

root

After mark

After sweep
free

Mark bit set

free

Assumes that pointers in memory are

known and point to start of some block

Mark and Sweep: Some Details

• How to mark:

• Depth first

• Breadth first

• Need to deal with cycles

• During search, return immediately when visiting a block that is

already marked

27

Baker’s Algorithm

• Problem: The basic mark and sweep algorithm takes time

proportional to the heap size since sweep must visit all blocks

• Sweep must visit all blocks to determine if they are marked

• Baker’s algorithm keeps a list of all allocated chucks of

memory, in addition to the free list

• During sweep, look at the allocated chunks only

• Free the allocated blocks that are not marked

• Mark and sweep times are both proportional to size of allocated

memory

28

Mark and Sweep in C

• Strategy:

• Check every word to see if it points to a block in the heap, and if it does,

mark that block

• Problems

• May get some false positives

• I.e., a word that isn’t a pointer is treated as one, causing garbage to be treated

as reachable memory, leads to external fragmentation

• C pointers can point to middle of block

• Solution: Need to keep track of start and end of each block; use a binary

search tree, keyed by start address of allocated blocks

• For more details see: “A garbage collector for C and C++”,

https://hboehm.info/gc/index.html

29

https://hboehm.info/gc/index.html

Mark and Sweep Issues

• Have to identify all references & pointers

• Requires jumping all over memory

• Terrible for performance

• Cache hit rate, paging

• Search time proportional to non-garbage

• May require lots of work for little reward (i.e., not much garbage

collected)

• Must stop program execution while performing GC

• Today, garbage collection is performed partially (not all garbage is

collected at once) and incrementally (in parallel with program execution)

30

Reference Counting

• Basic idea:

• In header, maintain count of # of references to block

• When new reference is made, increment counter

• When reference is removed, decrement counter

• When counter goes to 0, free block

• Requires compiler support

• red: code inserted by compiler

• Or use “smart pointers”

• C++ tricks to ref count automatically

ptr p = new obj
p.cnt++
ptr q = new obj
q.cnt++

p.cnt—
if (p.cnt==0) free p
p = q
q.cnt++

31

Reference Counting Problems

• malloc may return null

• Need to check, adds cost

• Garbage-collected blocks may include pointers

• Need to recursively follow and decrement count of pointed-to

blocks

• Cycles: reference counting fails conservatively

• It may not free all garbage (but it will never free non-garbage)

• Counter increments and decrements need to be atomic

• Adds overhead to each increment and decrement

32

Application-Aware Allocators

• Allocation patterns

• As application programmer, you know your pattern

• Leverage it!

• Allocation data structures

• Lists

• Other structures

33

Allocation Patterns

• Block lifetimes are not random

• Ramp – allocations throughout program lifetime without releases

• Plateau – allocations, then lengthy usage, then releases

• Peaks – bursty behavior and short object lifetimes

• Phases - allocations associated with lifetime of tasks, which runs in

different phases

• Block sizes are not random

• Zorn and Grunwald, 1992 study, six allocation-heavy C programs

• Found that 53-93% of requests were for top two sizes

34

Strategies for Application-Aware

Memory Management

• Strategy 1: Dominant pattern

• There are likely only a few dominant data structures that impact the

performance of your application, focus only on them

• Leave the rest to general purpose allocators, which are already very good

• Strategy 2: Arena pattern

• Allocate blocks with similar die time continuously

• Strategy 3: Slab pattern

• Allocate blocks with similar sizes contiguously

35

Arena Allocator

• Data Structures

• A stack of pages

• A watermark pointer

• Allocate

• return current watermark

• increment watermark, if exceed

page boundary, add new page

• take care of alignment

• Free:

• only at arena level when all pages

are freed.

• Complexity:

• Allocate: O(1)

• Free: O(1)

• Programmer burden: like

garbage collector

• Usage in Compilers

• Arenas reserved for different

compiler phases

• No need to walk data structure

graph to tear it down: they die

together anyway

36

Slab Allocator

• Data Structures

• A stack of pages

• A list of free chunks

• Allocate

• Grab a free chunk if available

• Add new page of not

• Free:

• add to front of free list

• Complexity:

• Allocate: O(1)

• Free: O(1)

• Usage in Kernel

• Network packet

• Almost everywhere

• Usage in memcached

• In-Memory application cache

37

Meta-Data Considerations: Where

• We have seen linked list(s) of variable sized free blocks

• Implicit – link allocated and free blocks

• Not used due to linear time allocation

• Explicit – link free blocks, use one or more lists

• More commonly used

• Where is the list stored?

• Integrated: use space within the free blocks to hold the links

• Benefit: no need to separately manage space for links

• Problem: poor locality when traversing the list (discussed later)

• External: use space separate from allocated or free blocks

• Benefit: better locality when traversing the list

• Problem: need to manage this space, how is it grown (discussed later)

38

Meta Data Considerations: Order

• What should be the order of free blocks in the list?

• LIFO

• Add freed block to beginning of list

• Provides locality

• FIFO

• Add freed block to end of list

• Benefits?

• Sorted by block size

• Limits traversal for smaller allocations

• Sorted by address

• Reduces heap fragmentation (we will see this later)

39

Meta-Data Data Structures

• Bitmap for fixed-size contiguous blocks

• Can be used for segregated storage

• Each list maintains blocks of the same size

• Blocks of the same size must be allocated contiguously

• leading zero / leading one detection instruction for help

• Trees

• Heap requires searching for a free block of a given size

• Use ordered trees to reduce search times compared to linked list

• E.g., use red-black tree to perform best fit in log(n) time, where n is

number of free blocks

40

Other Considerations

• Cache-Oblivious Data Structures

• Allocator assign addresses

• Effectively affecting memory layout

• If somehow we can making visit order ~= address order

• Effectively making memory accesses a sequential scan

• We know memory hierarchy likes that!

• No tuning: it does not matter much what cache/VM parameter values

are

41

Case Study 2: jemalloc

• Designed to scale on multiprocessors and to minimize fragmentation

• Original design: Jason Evans, “A Scalable Concurrent malloc(3)

Implementation for FreeBSD”, BSDCan 2006

• Please read for details, although the description is not great

• Various versions used in several BSD releases, in Firefox

• Facebook has made several optimizations ☺

• Please read details about the design philosophy at:

“Scalable memory allocation using jemalloc”,

https://engineering.fb.com/2011/01/03/core-data/scalable-memory-

allocation-using-jemalloc/

42

Motivation

• Traditional allocators focus on optimizing for

• Space utilization

• Performance (on single core)

• However, these allocators have two issues that lead to poor

multi-core scaling

• Data packing

• Locking scheme

43

Data Packing

• Traditional malloc packs data as efficiently as possible

• Improves caching, which is critical for program performance

• Helps with growing disparity between CPU and DRAM speeds

• memory-wall

• However, packing data structures can lead to poor multi-

threaded performance

44

Packing Data:

False Cache-Line Sharing
• Heap objects 1 and 2 accessed by Thread A and Thread B

• The two objects are not shared by the threads

• Say, malloc allocates objects within same cache line

• Reads and writes on different cores for unrelated objects cause cache line

invalidation, reduce performance dramatically

45

Object 1 Object 2

Avoiding Cache-Line Sharing

• malloc could add padding to the objects

• However, padding causes internal fragmentation, making it cache-

unfriendly

• Require user to pad objects that cause multi-core scaling

bottleneck

• Pros: Causes internal fragmentation for some objects only

• Cons: Requires programmers to carefully align data structures that

cause contention (i.e., limit scaling), requires detailed profiling to

determine contention

• Neither scheme is attractive

46

Locking Scheme

• Traditional malloc used simple locking scheme

• E.g., lock all data structures, serialize malloc and free calls

• Sufficient with limited # of cores

• Doesn’t scale well today since allocator locks become a

performance bottleneck

47

Avoiding Allocator Bottlenecks

• Use memory arenas

• Split heap memory into arenas, or continuous blocks of memory

• Each thread allocates memory from a single arena

• Memory allocated from an arena is freed into same arena

• Memory arenas reduce cache line sharing and lock contention

48

Memory Arenas for

Threaded Applications
• Total arenas typically limited to 4-8 times the number of cores

• Options for mapping threads to arenas

• Use simple round-robin

• Need to account for thread exit, thread locking behavior, etc.

• Use a hashing mechanism

• Can lead to load imbalance due to poor hashing

• Another optimization: During mapping, switch to another arena if

malloc encounters an arena that is locked by another thread

• Using pthread_mutex_trylock())

49

Jemalloc: Scaling for Multi-Cores

• Each thread allocates from an arena

• Reduces locking overheads, since few threads access each arena

• However, arenas still require synchronization

• Allocation requires locking a bin in the arena and/or the whole arena

• Add a per-thread allocator cache

• Each thread maintains a cache of small objects up to 32 KiB

• Most allocation requests hit the cache and require no locking

• # of cached objects per size class is capped so that synchronization is

reduced by ~10-100X

• Higher caching causes increased fragmentation

• Reduce fragmentation to improve data locality further by periodically

returning unused cache objects to underlying arena

50

Jemalloc Performance

51

Jemalloc Summary

• Designed to scale on multiprocessors and to minimize fragmentation

• Multi-processor scaling

• Minimize cache line sharing by using arenas

• Use round-robin assignment of threads to arenas to reduce skew

• Use per-thread allocator cache

• Minimize fragmentation

• Carefully choose size classes (what are the tradeoffs?)

• Prefer low addresses for allocation, similar to phkmalloc

• Tight limits on metadata overhead

• < 2%, ignoring fragmentation

52

	Slide 1: ECE 454 Computer Systems Programming Modern Allocators, Garbage Collectors
	Slide 2: Contents
	Slide 3: Case Study 1: phkmalloc
	Slide 4: Problem with Existing Malloc
	Slide 5: Phkmalloc Design
	Slide 6: Phkmalloc Page Allocator
	Slide 7: Phkmalloc Page Allocator
	Slide 8: Phkmalloc Page Allocator
	Slide 9: Page Allocator Design
	Slide 10: Phkmalloc Sub-Page Allocator
	Slide 11: Phkmalloc Sub-Page Allocator
	Slide 12: Phkmalloc Sub-Page Allocator
	Slide 13: How to Allocate from a Bit Vector?
	Slide 14: Phkmalloc Sub-Page Allocator
	Slide 15: Phkmalloc Sub-Page Allocator
	Slide 16: Phkmalloc Sub-Page Allocator
	Slide 17: Phkmalloc Summary
	Slide 18: Implicit Memory Management: Garbage Collection
	Slide 19: Drawback of Malloc and Free
	Slide 20: Garbage Collection
	Slide 21: Garbage Collection
	Slide 22: Classic GC algorithms
	Slide 23: Memory as a Graph
	Slide 24: Memory as a Graph
	Slide 25: Mark and Sweep Collection
	Slide 26: Mark and Sweep Example
	Slide 27: Mark and Sweep: Some Details
	Slide 28: Baker’s Algorithm
	Slide 29: Mark and Sweep in C
	Slide 30: Mark and Sweep Issues
	Slide 31: Reference Counting
	Slide 32: Reference Counting Problems
	Slide 33: Application-Aware Allocators
	Slide 34: Allocation Patterns
	Slide 35: Strategies for Application-Aware Memory Management
	Slide 36: Arena Allocator
	Slide 37: Slab Allocator
	Slide 38: Meta-Data Considerations: Where
	Slide 39: Meta Data Considerations: Order
	Slide 40: Meta-Data Data Structures
	Slide 41: Other Considerations
	Slide 42: Case Study 2: jemalloc
	Slide 43: Motivation
	Slide 44: Data Packing
	Slide 45: Packing Data: False Cache-Line Sharing
	Slide 46: Avoiding Cache-Line Sharing
	Slide 47: Locking Scheme
	Slide 48: Avoiding Allocator Bottlenecks
	Slide 49: Memory Arenas for Threaded Applications
	Slide 50: Jemalloc: Scaling for Multi-Cores
	Slide 51: Jemalloc Performance
	Slide 52: Jemalloc Summary

