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Overall Progress of the Course

• What we have learnt so far: improving sequential performance

• CPU architecture

• Compiler optimization

• Optimizations for processor caches

• Virtual memory, dynamic memory performance

• Next: improving performance by parallelization

• Single machine parallelization

• Using threads and processes on a single machine

• Multi-machine parallelization

• Using modern, data-intensive distributed computing
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Contents

• Threads and processes

• Posix threads

• Mutual exclusion

• Synchronization
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Threads and Processes
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Parallel Processing with Processes

• E.g., web server or any other online service

• Using just one process is problematic

• Client request arrives

• Servicing request may require reading data from disk

• Process blocks waiting for IO

• Other requests cannot be serviced while blocked

• Idea: use multiple processes to service requests

• Concurrently

• When a process blocks, another process can run on the same core

• Parallel

• Multiple processes can run simultaneously on different cores 5



Sample Server

6

…

Fork(): OS sys call to create new process. Address space of child is 

an exact copy of  parent (same data, same code, same PC, except 

Fork() of  child returns 0; Fork() of parent returns pid of  child).



Sample Server
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int main(int argc, char **argv) {
  int listenfd, connfd;
  stuct sock_addr_storage client_addr;

  listenfd = open_listenfd(argv[1]);
  while (1) {
    socklen_t  clientlen = sizeof(struct sock_addr_storage);
    connfd = Accept(listenfd, &client_addr, &clientlen);
    if (Fork() == 0) { // I am a child process
      close(listenfd);
      Read_and_Process_Request(connfd);
      close(connfd);
      exit();
    }
    close(connfd);
  }
}



Interprocess Communications (IPC)

• Above program requires no communication between processes

• But what if  we do require communication?

• Send signals

• Sockets (TCP/IP connections)

• Pipes

• Memory mapped regions (mmap())

• Access to shared data needs to 

be synchronized…

• How?
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Process

• Process = process context (CPU state) + 

                 address space (code, data, and stack) + kernel state
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Performance Overhead in 

Process Management
• Creating a new process is costly because of  all the data 

structures (process context, address space, kernel state) that 

must be allocated and initialized

• Communicating between processes is costly because 

communication goes through the OS 

• Overhead of  system calls and copying data 

• Switching between processes is also expensive

• Why?
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Rethinking Processes

• What do cooperating processes share?

• They share some code and data (address space)

• They share some privileges, files, sockets, etc. (kernel state)

• What don’t they share?

• Each process has its own execution state: PC, SP, and registers

• Key idea: Why don’t we separate the concept of  a process 

from its execution state?

• Process: address space, kernel state

• Execution state: PC, SP, registers

• Execution state also called thread of  control, or thread
11



Threads: Lightweight Processes
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(a) Three processes each with one thread

(b) One process with three threads

executionenvironment (resource)



Process with Two Threads
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Threads vs. Processes

• Similarities

• Each has its own logical control flow

• Each runs independently of  (concurrently with) others

• Differences

• Threads share code and data, processes (typically) do not

• Threads are much less expensive than processes

• Process control (creating and destroying processes) is more expensive 

than thread control

• Process context switch is much more expensive than for thread switch
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Pros and Cons of  

Thread-Based Designs
• Pros

• Easy to share data structures between threads

• e.g., logging information, file cache

• Threads are more efficient than processes

• E.g., on Intel 2.6 GHz Xeon E5-2670:

• Fork: 162 usecs

• Thread creation: 18 usecs

• Cons

• Unintentional sharing can cause subtle, hard-to-reproduce errors!

• The ease with which data can be shared is both the greatest 

strength and the greatest weakness of  threads
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Posix Threads
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Posix Threads (Pthreads) Interface

• Pthreads: Standard interface of  ~60 functions that manipulate 

threads from C programs

• Creating and reaping threads

• pthread_create(pthread_t *tid, …, func *f, void *arg)

• pthread_join(pthread_t tid, void **thread_return)

• Determining your thread ID

• pthread_self()
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Posix Threads (Pthreads) Interface

• Terminating threads

• pthread_cancel(pthread_t tid)

• pthread_exit(void *thread_return)

• return (in primary thread routine terminates the thread)

• exit() (terminates all threads) 

• Synchronizing access to shared variables

• Later
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Example of  Thread Creation

main()

pthread_create(func) func()
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Thread Joining Example

void *func(void *) { ….. }

pthread_t id;  

int X;

pthread_create(&id, NULL, func, (void *)&X);

…

pthread_join(id, NULL);   // awaits function to return

…
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Example of  Thread Creation (contd.)

main()

pthread_create(func)

func()

pthread_join(id)

return NULL;

waits for other 
thread to complete
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The Pthreads 

“Hello, world" Program
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/* hello.c - Pthreads "hello, world" program */
#include "csapp.h"

void *thread(void *vargp);

int main() {
  pthread_t tid;

  Pthread_create(&tid, NULL, &thread, NULL);
  Pthread_join(tid, NULL);
  exit(0);
}

/* thread routine */
void *thread(void *vargp) {
  printf("Hello, world!\n"); 
  return NULL;
}

Thread attributes 

(usually NULL)

Thread arguments

(void *p) 

assigns return value

(void **p)



How to Program with Pthreads

• Decide how to decompose the computation into parallel parts

• Create (and destroy) threads to support that decomposition

• Add synchronization to make sure dependences are satisfied

• Easier said than done!

23



Example: Matrix Multiply

• All i- or j-iterations 

can be run in parallel

• One option:

• If  we have p cores, assign n/p rows of  C matrix to each core

• Corresponds to partitioning the i-loop
24

Core 0

Core 1

Core 2

Core 3

for(i=0; i<n; i++) {
 for(j=0; j<n; j++) {
   for(k=0; k<n; k++) {
   c[i][j] += a[i][k]*b[k][j];
        }
 }
}

Core 0 calculates 

c[0 ... (n/4)-1][*] 

Core 1 calculates 

c[(n/4) ... (2n/4)-1][*] 



Parallel Matrix Multiply
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int n = 1000000000;
int p = 16; // # of cores

int main() {
  pthread_t thread[p];
 
  for(i=0; i<p; i++) {
    pthread_create(&thread[i], NULL, mmult, (void*) &i);
  }

  for(i=0; i<p; i++)
    pthread_join(thread[i], NULL);
  }
}



Matrix Multiply Per Thread
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void mmult (void* s) {
  int slice = *((int *)s); 

  int from = (slice*n)/p;
  int to = ((slice+1)*n)/p;
  
  for(i=from; i<to; i++) {
    for(j=0; j<n; j++) {
      for(k=0; k<n; k++)
        c[i][j] += a[i][k]*b[k][j];
  }
  }
}



Some Models for 

Threaded Programs
• Manager / worker

• Manager performs setup

• Partitions work, e.g., by request

• Synchronizes completion

• Pros

• Simple initial design

• Cons

• Shared state complicates design, synchronization

• Easier to make workers stateless by separating state from workers, but 

then workers need to re-read up-to-date state when they operate on it

• Hard to enforce job ordering

27



Some Models for 

Threaded Programs
• Pipelined execution

• Execution of  a request may be pipelined across multiple processes

• Pros

• Processes share no state, buffers perform synchronization

• Each process is simple, written like a single threaded application

• Each process can be stateful

• Jobs can be ordered, logged

• Simplifies tasks like backup, replication

• Cons

• Code is written in callback style, making it hard to debug 28



Mutual Exclusion
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What is Mutual Exclusion?

• Ensures operations on shared data are performed by only one 

thread at a time, aka critical section

• Ensured by using locks

• Helps avoid races

• Does not provide any guarantees on ordering

• Provided by synchronization (discussed later)

30

Lock

Unlock

critical

section



Mutual Exclusion Goals

• Works independent of  speed of  execution of  threads

• Threads outside critical sections don’t block other threads

• Threads trying to enter critical section succeed eventually

• Critical sections are small, allowing better scalability
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Mutual Exclusion and 

Critical Sections
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Lock

Load X

Store X

Unlock

size of critical section impacts execution time

critical

section

stall e
x
e

c
u

tio
n

 tim
e
p1 p2 p3



Coarse-Grain Locking 

(a.k.a. Global Lock)
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Coarse-Grain Locking 

(a.k.a. Global Lock)
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Fine-Grained Locking
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Contention and Scalability

• Contention refers to a lock that is held when another thread 

tries to acquire it

• Scalability refers to ability to handle increasing load with a 

larger system

• Locking serializes execution of  critical sections

• Limits ability to use multiple processors, recall Amdahl’s law

• Locks that are frequently contended limit scalability

• Coarse-grained locking increases contention

• Causes unnecessary cache misses from coherence protocol

• May make performance even worse than single core



Example 1: Linux Kernel Scalability

• “An Analysis of  Linux Scalability to Many Cores” [OSDI’10]

• Linux 2.6.39 (2011) removed the last instance of  big kernel lock
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Example 2: Facebook’s memcached
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“Scaling Memcache at Facebook” [NSDI’13]

“Enhancing the Scalability of  Memcached” [Intel@ Developer Zone’12]



Races

• A race occurs when certain thread interleavings lead to 

incorrect program behavior

• E.g., program depends on one thread reaching point x before 

another thread reaches point y, but the program doesn’t enforce 

this behavior

• A data race occurs when a variable is accessed (read or 

modified) by multiple threads without any synchronization, 

and at least one thread modifies the variable

39



Data Race Example
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/* a threaded program with a data race */
int main() {
    pthread_t tid[N];
    int i;
    for (i = 0; i < N; i++)
        pthread_create(&tid[i], NULL, thread, &i);
    for (i = 0; i < N; i++)
        pthread_join(tid[i], NULL);
    exit(0);
}

/* thread routine */
void *thread(void *vargp) {
    int myid = *((int *)vargp);
    printf("Hello from thread %d\n", myid);
}



Output: Why?
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$ ./race
Hello from thread 1
Hello from thread 2
Hello from thread 6
Hello from thread 3
Hello from thread 7
Hello from thread 5
Hello from thread 9
Hello from thread 4
Hello from thread 9
Hello from thread 0



Synchronization
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What is Synchronization?

• Ensures ordering of  events to preserve dependencies

• Barriers: All threads wait at same point in the program

• E.g., doing pthread_join for all threads

• Producer-consumer

• E.g., Thread A writing a stream of  samples, Thread B reading them

• Condition variables used to wait for an event to occur
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Barriers
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Barriers with Pthreads

• Initialize a barrier with count threads

pthread_barrier_t *barrier;
pthread_barrier_init(pthread_barrier_t *barrier,
                     pthread_barrier_attr_t *attr,
                     unsigned int count)

• Wait for all threads to reach the barrier before continuing

pthread_barrier_wait(pthread_barrier_t *barrier)
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Condition Variables with Pthreads

• Requires using locks while condition variables are used

• Create a new condition variable

pthread_cont_t *cond;
pthread_cond_init(pthread_cond_t *cond,
                  pthread_cond_attr *attr)

• Destroy a condition variable

pthread_cond_destroy(pthread_cond_t *cond)
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Condition Variable Synchronization

• Block the calling thread on condition variable cond

pthread_cond_wait(pthread_cond_t *cond,
                  pthread_mutex_t *mutex)

• Atomically unlocks the mutex, waits on cond

• When cond is signaled, reacquires mutex

• Unblock one thread waiting on cond

pthread_cond_signal(pthread_cond_t *cond)

• If  no thread is waiting, signal does nothing

• Unblock all threads waiting on cond

pthread_cond_broadcast(pthread_cond_t *cond)

• If  no thread waiting, then broadcast does nothing.
47



Example: Parallelize This Code

• Problem:

• Each iteration 

depends on the 

previous iteration
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for(i=1; i<100; i++) {
  a[i] = …;
  …; // long code
  … = a[i-1];
}

a[3] = …;

…

… = a[2];

a[4] = …;

…

… = a[3];

a[5] = …;

…

… = a[4];

a[3] = …;

…

… = a[2];

a[4] = …;

…

… = a[3];

a[5] = …;

…

… = a[4];



Synchronization with 

Condition Variable

• PROBLEM

• signal does nothing if  

corresponding  wait 

hasn’t already executed

• i.e., signal gets “lost”

49

need a cond variable for each iteration

a[3] = …;

… = a[2];

…

a[4] = …;

… = a[3];

…
signal

wait

signal is lost if  wait 

hasn’t executed yet

wait waits forever -- 

deadlock!

for( i=...; i<...; i++ ) {
  a[i] = …;
  signal(e_a[i]);
  …; // long code
  wait(e_a[i-1]);
  … = a[i-1];
}



How to Remember a Signal
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signal(i) {

  pthread_mutex_lock(&mutex_rem[i]);

  arrived[i] = 1;   // track that signal(i) has happened

  pthread_cond_signal(&cond[i]); //signal

  pthread_mutex_unlock(&mutex_rem[i]);

}

wait(i) {

 pthreads_mutex_lock(&mutex_rem[i]);

  if (arrived[i] == 0) // wait only if signal hasn’t happen yet

    pthreads_cond_wait(&cond[i], mutex_rem[i]);

  arrived[i] = 0;  // reset for next time

  pthreads_mutex_unlock(&mutex_rem[i]);

}



Synchronization with Semaphores

• Semaphores store state and so wait and signal can happen in 

either order

51

for( i=...; i<...; i++ ) {
  a[i] = …;
  up(e_a[i]);     // similar to signal, increments semaphore
  …; // long code
  down(e_a[i-1]); // similar to wait, decrements semaphore
  … = a[i-1];
}



Producer-Consumer Problem

• Threads communicate with each other using a shared buffer of  

a fixed size (i.e., bounded buffer)

• One or more producers fill buffer

• One or more consumers empty buffer

• Two synchronizations conditions

• Producers wait if  the buffer is full

• Consumers wait if  the buffer is empty

52



Bounded Buffer Implementation

• Implementation uses a circular buffer

• Producers write at in, increment in, go clockwise

• Consumers read from out, increment out, go clockwise

• Number of  elements in buffer: count  = (in - out + n) % n

• E.g., count = (6 – 3 + 8) % 8 = 3  // n is 8 since buffer has 8 slots

• Buffer is full when it has n-1 elements, i.e., count == (n - 1)

• Buffer is empty when it has no elements, i.e., count == 0

53

shared variables:

char buf[8]; // 7 usable slots

int in;      // place to write

int out;     // place to read

7 0

1

2

in = 6

out = 3



Producer-Consumer with Monitors
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char receive() {

  lock(l);

  while (in == out) {

    wait(empty, l);

  } // empty

  msg = buf[out];

  out = (out + 1) % n;

  signal(full, l);

  unlock(l);

  return msg;

}

void send(char msg) {

  lock(l);

  while ((in–out+n)%n == n - 1) {

    wait(full, l);

  } // full

  buf[in] = msg;

  in = (in + 1) % n;

  signal(empty, l);

  unlock(l);

}

Global variables:

buf[n], in, out;

lock l = 0;

cv full; // no initialization

cv empty;

• Why two condition variables?

• Why use “while”, instead of  “if”?



Producer-Consumer 

with Semaphores

55

char receive() {

  down(full);

  lock(l);

  msg = buf[out];

  out = (out + 1) % n;

  unlock(l);

  up(empty);

 return msg;

}

void send(char msg) {

  down(empty);

  lock(l);

  buf[in] = msg;

  in = (in + 1) % n;

  unlock(l);

  up(full);

}

Global variables:

buf[n], in, out;

lock l;

sem full = 0;  // no full slots

sem empty = n; // all slots are empty

• Why two condition variables?

• Why is locking needed?

• Can we switch down(), lock()?
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