
Jon Eyolfson

Courtesy: Ashvin Goel

ECE Dept, University of Toronto

ECE 454

Computer Systems

Programming

Threads and Synchronization

Overall Progress of the Course

• What we have learnt so far: improving sequential performance

• CPU architecture

• Compiler optimization

• Optimizations for processor caches

• Virtual memory, dynamic memory performance

• Next: improving performance by parallelization

• Single machine parallelization

• Using threads and processes on a single machine

• Multi-machine parallelization

• Using modern, data-intensive distributed computing

2

Contents

• Threads and processes

• Posix threads

• Mutual exclusion

• Synchronization

3

Threads and Processes

4

Parallel Processing with Processes

• E.g., web server or any other online service

• Using just one process is problematic

• Client request arrives

• Servicing request may require reading data from disk

• Process blocks waiting for IO

• Other requests cannot be serviced while blocked

• Idea: use multiple processes to service requests

• Concurrently

• When a process blocks, another process can run on the same core

• Parallel

• Multiple processes can run simultaneously on different cores 5

Sample Server

6

…

Fork(): OS sys call to create new process. Address space of child is

an exact copy of parent (same data, same code, same PC, except

Fork() of child returns 0; Fork() of parent returns pid of child).

Sample Server

7

int main(int argc, char **argv) {
 int listenfd, connfd;
 stuct sock_addr_storage client_addr;

 listenfd = open_listenfd(argv[1]);
 while (1) {
 socklen_t clientlen = sizeof(struct sock_addr_storage);
 connfd = Accept(listenfd, &client_addr, &clientlen);
 if (Fork() == 0) { // I am a child process
 close(listenfd);
 Read_and_Process_Request(connfd);
 close(connfd);
 exit();
 }
 close(connfd);
 }
}

Interprocess Communications (IPC)

• Above program requires no communication between processes

• But what if we do require communication?

• Send signals

• Sockets (TCP/IP connections)

• Pipes

• Memory mapped regions (mmap())

• Access to shared data needs to

be synchronized…

• How?

8

before

fork()

after

fork()

Process

• Process = process context (CPU state) +

 address space (code, data, and stack) + kernel state

9

shared libraries

run-time heap

0

read/write data

Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

address space

read-only code/data

stack
SP

PC

brk

Process context

virt. mem. structures
brk pointer
file descriptor table

Kernel state

Performance Overhead in

Process Management
• Creating a new process is costly because of all the data

structures (process context, address space, kernel state) that

must be allocated and initialized

• Communicating between processes is costly because

communication goes through the OS

• Overhead of system calls and copying data

• Switching between processes is also expensive

• Why?

10

Rethinking Processes

• What do cooperating processes share?

• They share some code and data (address space)

• They share some privileges, files, sockets, etc. (kernel state)

• What don’t they share?

• Each process has its own execution state: PC, SP, and registers

• Key idea: Why don’t we separate the concept of a process

from its execution state?

• Process: address space, kernel state

• Execution state: PC, SP, registers

• Execution state also called thread of control, or thread
11

Threads: Lightweight Processes

12

(a) Three processes each with one thread

(b) One process with three threads

executionenvironment (resource)

Process with Two Threads

13

shared libraries

run-time heap

0

read/write data

address space

read-only code/dataPC

brk

Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

stack
SP

Thread context

virt. mem. structures
brk pointer
file descriptor table

Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

stack
SP

Thread context
kernel state

Threads vs. Processes

• Similarities

• Each has its own logical control flow

• Each runs independently of (concurrently with) others

• Differences

• Threads share code and data, processes (typically) do not

• Threads are much less expensive than processes

• Process control (creating and destroying processes) is more expensive

than thread control

• Process context switch is much more expensive than for thread switch

14

Pros and Cons of

Thread-Based Designs
• Pros

• Easy to share data structures between threads

• e.g., logging information, file cache

• Threads are more efficient than processes

• E.g., on Intel 2.6 GHz Xeon E5-2670:

• Fork: 162 usecs

• Thread creation: 18 usecs

• Cons

• Unintentional sharing can cause subtle, hard-to-reproduce errors!

• The ease with which data can be shared is both the greatest

strength and the greatest weakness of threads

15

Posix Threads

16

Posix Threads (Pthreads) Interface

• Pthreads: Standard interface of ~60 functions that manipulate

threads from C programs

• Creating and reaping threads

• pthread_create(pthread_t *tid, …, func *f, void *arg)

• pthread_join(pthread_t tid, void **thread_return)

• Determining your thread ID

• pthread_self()

17

Posix Threads (Pthreads) Interface

• Terminating threads

• pthread_cancel(pthread_t tid)

• pthread_exit(void *thread_return)

• return (in primary thread routine terminates the thread)

• exit() (terminates all threads)

• Synchronizing access to shared variables

• Later

18

Example of Thread Creation

main()

pthread_create(func) func()

19

Thread Joining Example

void *func(void *) { ….. }

pthread_t id;

int X;

pthread_create(&id, NULL, func, (void *)&X);

…

pthread_join(id, NULL); // awaits function to return

…

20

Example of Thread Creation (contd.)

main()

pthread_create(func)

func()

pthread_join(id)

return NULL;

waits for other
thread to complete

21

The Pthreads

“Hello, world" Program

22

/* hello.c - Pthreads "hello, world" program */
#include "csapp.h"

void *thread(void *vargp);

int main() {
 pthread_t tid;

 Pthread_create(&tid, NULL, &thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

/* thread routine */
void *thread(void *vargp) {
 printf("Hello, world!\n");
 return NULL;
}

Thread attributes

(usually NULL)

Thread arguments

(void *p)

assigns return value

(void **p)

How to Program with Pthreads

• Decide how to decompose the computation into parallel parts

• Create (and destroy) threads to support that decomposition

• Add synchronization to make sure dependences are satisfied

• Easier said than done!

23

Example: Matrix Multiply

• All i- or j-iterations

can be run in parallel

• One option:

• If we have p cores, assign n/p rows of C matrix to each core

• Corresponds to partitioning the i-loop
24

Core 0

Core 1

Core 2

Core 3

for(i=0; i<n; i++) {
 for(j=0; j<n; j++) {
 for(k=0; k<n; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

Core 0 calculates

c[0 ... (n/4)-1][*]

Core 1 calculates

c[(n/4) ... (2n/4)-1][*]

Parallel Matrix Multiply

25

int n = 1000000000;
int p = 16; // # of cores

int main() {
 pthread_t thread[p];

 for(i=0; i<p; i++) {
 pthread_create(&thread[i], NULL, mmult, (void*) &i);
 }

 for(i=0; i<p; i++)
 pthread_join(thread[i], NULL);
 }
}

Matrix Multiply Per Thread

26

void mmult (void* s) {
 int slice = *((int *)s);

 int from = (slice*n)/p;
 int to = ((slice+1)*n)/p;

 for(i=from; i<to; i++) {
 for(j=0; j<n; j++) {
 for(k=0; k<n; k++)
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

Some Models for

Threaded Programs
• Manager / worker

• Manager performs setup

• Partitions work, e.g., by request

• Synchronizes completion

• Pros

• Simple initial design

• Cons

• Shared state complicates design, synchronization

• Easier to make workers stateless by separating state from workers, but

then workers need to re-read up-to-date state when they operate on it

• Hard to enforce job ordering

27

Some Models for

Threaded Programs
• Pipelined execution

• Execution of a request may be pipelined across multiple processes

• Pros

• Processes share no state, buffers perform synchronization

• Each process is simple, written like a single threaded application

• Each process can be stateful

• Jobs can be ordered, logged

• Simplifies tasks like backup, replication

• Cons

• Code is written in callback style, making it hard to debug 28

Mutual Exclusion

29

What is Mutual Exclusion?

• Ensures operations on shared data are performed by only one

thread at a time, aka critical section

• Ensured by using locks

• Helps avoid races

• Does not provide any guarantees on ordering

• Provided by synchronization (discussed later)

30

Lock

Unlock

critical

section

Mutual Exclusion Goals

• Works independent of speed of execution of threads

• Threads outside critical sections don’t block other threads

• Threads trying to enter critical section succeed eventually

• Critical sections are small, allowing better scalability

31

Lock

Unlock

critical

section

Mutual Exclusion and

Critical Sections

32

Lock

Load X

Store X

Unlock

size of critical section impacts execution time

critical

section

stall e
x
e

c
u

tio
n

 tim
e
p1 p2 p3

Coarse-Grain Locking

(a.k.a. Global Lock)

33

… = A

…

A = …

… = A

…

A = …

C C

T
im

e

easy ☺

lock

unlock

lock

unlock

Coarse-Grain Locking

(a.k.a. Global Lock)

34

… = A

…

A = …

… = B

…

B = …

C C

T
im

e

easy ☺ but slow

lock

unlock

lock

unlock

Fine-Grained Locking

35

… = A

…

A = …

lock A

unlock A

… = B

…

B = …

lock B

unlock B

C C

T
im

e

Fast ☺ but harder

Contention and Scalability

• Contention refers to a lock that is held when another thread

tries to acquire it

• Scalability refers to ability to handle increasing load with a

larger system

• Locking serializes execution of critical sections

• Limits ability to use multiple processors, recall Amdahl’s law

• Locks that are frequently contended limit scalability

• Coarse-grained locking increases contention

• Causes unnecessary cache misses from coherence protocol

• May make performance even worse than single core

Example 1: Linux Kernel Scalability

• “An Analysis of Linux Scalability to Many Cores” [OSDI’10]

• Linux 2.6.39 (2011) removed the last instance of big kernel lock

37

Example 2: Facebook’s memcached

38

“Scaling Memcache at Facebook” [NSDI’13]

“Enhancing the Scalability of Memcached” [Intel@ Developer Zone’12]

Races

• A race occurs when certain thread interleavings lead to

incorrect program behavior

• E.g., program depends on one thread reaching point x before

another thread reaches point y, but the program doesn’t enforce

this behavior

• A data race occurs when a variable is accessed (read or

modified) by multiple threads without any synchronization,

and at least one thread modifies the variable

39

Data Race Example

40

/* a threaded program with a data race */
int main() {
 pthread_t tid[N];
 int i;
 for (i = 0; i < N; i++)
 pthread_create(&tid[i], NULL, thread, &i);
 for (i = 0; i < N; i++)
 pthread_join(tid[i], NULL);
 exit(0);
}

/* thread routine */
void *thread(void *vargp) {
 int myid = *((int *)vargp);
 printf("Hello from thread %d\n", myid);
}

Output: Why?

41

$./race
Hello from thread 1
Hello from thread 2
Hello from thread 6
Hello from thread 3
Hello from thread 7
Hello from thread 5
Hello from thread 9
Hello from thread 4
Hello from thread 9
Hello from thread 0

Synchronization

42

What is Synchronization?

• Ensures ordering of events to preserve dependencies

• Barriers: All threads wait at same point in the program

• E.g., doing pthread_join for all threads

• Producer-consumer

• E.g., Thread A writing a stream of samples, Thread B reading them

• Condition variables used to wait for an event to occur

43

Barriers

44

Barrier arrive

Barrier leave
stall e

x
e

c
u

tio
n

 tim
e

p1 p2 p3

threads need to be at same

program point before continuing

Barriers with Pthreads

• Initialize a barrier with count threads

pthread_barrier_t *barrier;
pthread_barrier_init(pthread_barrier_t *barrier,
 pthread_barrier_attr_t *attr,
 unsigned int count)

• Wait for all threads to reach the barrier before continuing

pthread_barrier_wait(pthread_barrier_t *barrier)

45

Condition Variables with Pthreads

• Requires using locks while condition variables are used

• Create a new condition variable

pthread_cont_t *cond;
pthread_cond_init(pthread_cond_t *cond,
 pthread_cond_attr *attr)

• Destroy a condition variable

pthread_cond_destroy(pthread_cond_t *cond)

46

Condition Variable Synchronization

• Block the calling thread on condition variable cond

pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex)

• Atomically unlocks the mutex, waits on cond

• When cond is signaled, reacquires mutex

• Unblock one thread waiting on cond

pthread_cond_signal(pthread_cond_t *cond)

• If no thread is waiting, signal does nothing

• Unblock all threads waiting on cond

pthread_cond_broadcast(pthread_cond_t *cond)

• If no thread waiting, then broadcast does nothing.
47

Example: Parallelize This Code

• Problem:

• Each iteration

depends on the

previous iteration

48

for(i=1; i<100; i++) {
 a[i] = …;
 …; // long code
 … = a[i-1];
}

a[3] = …;

…

… = a[2];

a[4] = …;

…

… = a[3];

a[5] = …;

…

… = a[4];

a[3] = …;

…

… = a[2];

a[4] = …;

…

… = a[3];

a[5] = …;

…

… = a[4];

Synchronization with

Condition Variable

• PROBLEM

• signal does nothing if

corresponding wait

hasn’t already executed

• i.e., signal gets “lost”

49

need a cond variable for each iteration

a[3] = …;

… = a[2];

…

a[4] = …;

… = a[3];

…
signal

wait

signal is lost if wait

hasn’t executed yet

wait waits forever --

deadlock!

for(i=...; i<...; i++) {
 a[i] = …;
 signal(e_a[i]);
 …; // long code
 wait(e_a[i-1]);
 … = a[i-1];
}

How to Remember a Signal

50

signal(i) {

 pthread_mutex_lock(&mutex_rem[i]);

 arrived[i] = 1; // track that signal(i) has happened

 pthread_cond_signal(&cond[i]); //signal

 pthread_mutex_unlock(&mutex_rem[i]);

}

wait(i) {

 pthreads_mutex_lock(&mutex_rem[i]);

 if (arrived[i] == 0) // wait only if signal hasn’t happen yet

 pthreads_cond_wait(&cond[i], mutex_rem[i]);

 arrived[i] = 0; // reset for next time

 pthreads_mutex_unlock(&mutex_rem[i]);

}

Synchronization with Semaphores

• Semaphores store state and so wait and signal can happen in

either order

51

for(i=...; i<...; i++) {
 a[i] = …;
 up(e_a[i]); // similar to signal, increments semaphore
 …; // long code
 down(e_a[i-1]); // similar to wait, decrements semaphore
 … = a[i-1];
}

Producer-Consumer Problem

• Threads communicate with each other using a shared buffer of

a fixed size (i.e., bounded buffer)

• One or more producers fill buffer

• One or more consumers empty buffer

• Two synchronizations conditions

• Producers wait if the buffer is full

• Consumers wait if the buffer is empty

52

Bounded Buffer Implementation

• Implementation uses a circular buffer

• Producers write at in, increment in, go clockwise

• Consumers read from out, increment out, go clockwise

• Number of elements in buffer: count = (in - out + n) % n

• E.g., count = (6 – 3 + 8) % 8 = 3 // n is 8 since buffer has 8 slots

• Buffer is full when it has n-1 elements, i.e., count == (n - 1)

• Buffer is empty when it has no elements, i.e., count == 0

53

shared variables:

char buf[8]; // 7 usable slots

int in; // place to write

int out; // place to read

7 0

1

2

in = 6

out = 3

Producer-Consumer with Monitors

54

char receive() {

 lock(l);

 while (in == out) {

 wait(empty, l);

 } // empty

 msg = buf[out];

 out = (out + 1) % n;

 signal(full, l);

 unlock(l);

 return msg;

}

void send(char msg) {

 lock(l);

 while ((in–out+n)%n == n - 1) {

 wait(full, l);

 } // full

 buf[in] = msg;

 in = (in + 1) % n;

 signal(empty, l);

 unlock(l);

}

Global variables:

buf[n], in, out;

lock l = 0;

cv full; // no initialization

cv empty;

• Why two condition variables?

• Why use “while”, instead of “if”?

Producer-Consumer

with Semaphores

55

char receive() {

 down(full);

 lock(l);

 msg = buf[out];

 out = (out + 1) % n;

 unlock(l);

 up(empty);

 return msg;

}

void send(char msg) {

 down(empty);

 lock(l);

 buf[in] = msg;

 in = (in + 1) % n;

 unlock(l);

 up(full);

}

Global variables:

buf[n], in, out;

lock l;

sem full = 0; // no full slots

sem empty = n; // all slots are empty

• Why two condition variables?

• Why is locking needed?

• Can we switch down(), lock()?

	Slide 1: ECE 454 Computer Systems Programming Threads and Synchronization
	Slide 2: Overall Progress of the Course
	Slide 3: Contents
	Slide 4: Threads and Processes
	Slide 5: Parallel Processing with Processes
	Slide 6: Sample Server
	Slide 7: Sample Server
	Slide 8: Interprocess Communications (IPC)
	Slide 9: Process
	Slide 10: Performance Overhead in Process Management
	Slide 11: Rethinking Processes
	Slide 12: Threads: Lightweight Processes
	Slide 13: Process with Two Threads
	Slide 14: Threads vs. Processes
	Slide 15: Pros and Cons of Thread-Based Designs
	Slide 16: Posix Threads
	Slide 17: Posix Threads (Pthreads) Interface
	Slide 18: Posix Threads (Pthreads) Interface
	Slide 19: Example of Thread Creation
	Slide 20: Thread Joining Example
	Slide 21: Example of Thread Creation (contd.)
	Slide 22: The Pthreads “Hello, world" Program
	Slide 23: How to Program with Pthreads
	Slide 24: Example: Matrix Multiply
	Slide 25: Parallel Matrix Multiply
	Slide 26: Matrix Multiply Per Thread
	Slide 27: Some Models for Threaded Programs
	Slide 28: Some Models for Threaded Programs
	Slide 29: Mutual Exclusion
	Slide 30: What is Mutual Exclusion?
	Slide 31: Mutual Exclusion Goals
	Slide 32: Mutual Exclusion and Critical Sections
	Slide 33: Coarse-Grain Locking (a.k.a. Global Lock)
	Slide 34: Coarse-Grain Locking (a.k.a. Global Lock)
	Slide 35: Fine-Grained Locking
	Slide 36: Contention and Scalability
	Slide 37: Example 1: Linux Kernel Scalability
	Slide 38: Example 2: Facebook’s memcached
	Slide 39: Races
	Slide 40: Data Race Example
	Slide 41: Output: Why?
	Slide 42: Synchronization
	Slide 43: What is Synchronization?
	Slide 44: Barriers
	Slide 45: Barriers with Pthreads
	Slide 46: Condition Variables with Pthreads
	Slide 47: Condition Variable Synchronization
	Slide 48: Example: Parallelize This Code
	Slide 49: Synchronization with Condition Variable
	Slide 50: How to Remember a Signal
	Slide 51: Synchronization with Semaphores
	Slide 52: Producer-Consumer Problem
	Slide 53: Bounded Buffer Implementation
	Slide 54: Producer-Consumer with Monitors
	Slide 55: Producer-Consumer with Semaphores

