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Big Picture

• We know that we need parallelization 

• But will more parallelization always yield better performance?
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Topics

• Cache coherence

• Performance of  memory operations

• Implications for software design

• Memory consistency
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Cache Coherence
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Modern Shared Memory 

Parallel Architectures
• Provide several processing elements (cores or processors)

• Provide shared memory

• Any processor can directly reference any memory location

• Communication occurs implicitly through loads and stores

• Cores have private caches to improve performance
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Cache Coherence Problem

• With multiple cores, data is cached in multiple locations, so 

how do you ensure consistency?
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Example 1: Coherence Problem
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Example 2: Coherence Problem
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Example 2: Coherence Problem
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Example 2: Coherence Problem
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Example 2: Coherence Problem
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Example 2: Coherence Problem
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Cache (or Memory) Coherence

• The behavior of  the system is equivalent to there being only a 

single copy of  the data except for the performance benefit of  

the cache. [Gray and Cheriton 83]

• Cache coherence ensures that all processors have a consistent 

view of  a single memory location (e.g., X)

• All loads and stores to X can be put on a timeline (total order) that 

respects the program order of  loads and stores of  each processor
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P0

write(X, 5)

P1

 5 ← read(X)

20 ← read(X)

P2

write(X, 10)

write(X, 20)

w(5) r(5) w(10) w(20) r(20)



Why Cache Coherence?

• With non-cache coherent machines, e.g., Intel Rack Scale, The 

Machine from HP, loads and stores are not synchronized

• Loads may read stale data, i.e., store is not visible to later load

• Stores are not sequenced, i.e., stores visible in different orders

• Really complicates the programming model
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MSI Coherence Protocol

• Ensuring coherence requires hardware support

• Called coherence protocol

• Add three (exclusive) states to each cache line (on each core):

• Invalid – data is not cached

• Modified – core has written to the cache line

• Cache line is inconsistent with primary storage

• Cache line is not shared with other cores

• Shared – core has read from the cache line

• Cache line is consistent with primary storage

• Cache line may be shared with other cores
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MSI Coherence Protocol
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MSI Coherence Protocol
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MSI Coherence Protocol
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MSI Coherence Protocol
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MSI Coherence Protocol

21

Shared Memory (X,2 (stale))

Cache

Processor

X

Tag

Modified

State

3

Data

Cache

Processor

-

Tag

Invalid

State

-

Data

Load X

Store X=3Thread A: Thread B:

InvalidationInvalidation



Problem with MSI

• If  a core reads a value that is not cached on any core and then 

writes to the value, then two cache coherence requests are 

generated

• A request to read the value (required)

• A request to write the value (unnecessary invalidation request sent 

because the MSI protocol doesn’t know that no one else has a 

copy)
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MESI (aka Illinois) Protocol

• Four (exclusive) states of  each cache line:

• Invalid – data is not cached

• Modified – core has written to the cache line

• Cache line is inconsistent with primary storage

• Cache line is not shared with other cores

• Shared – core has read from the cache line

• Cache line is consistent with primary storage

• Cache line may be shared with other cores

• Exclusive: core has read from the cache line

• Cache line is consistent with primary storage

• Cache line is not shared by other cores

• Write to Exclusive state does not generate invalidation request
23



MESI Details: Writing

• An attempt to write to a block that is in Invalid state is 

called a write miss

• Must cache the block in Exclusive state before writing to it

• Generates a read-exclusive (or read for ownership) request

• A read request with intent to write to the memory address

• If  other caches have copy of  data, they send it, invalidate their copy

• Completes when there are no more valid copies

• Can then perform the write and enter the modified state

• This step doesn’t require invalidation request
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MESI Examples

• Example 1: load on one core followed by load on another core

• Example 2: load on one core followed by store on another core

• Example 3: store on one core followed by load on another core
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Example 1: MESI Coherence
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Example 1: MESI Coherence
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Example 1: MESI Coherence

28

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread A:

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread B:

Load X

Read



Example 1: MESI Coherence
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Example 1: MESI Coherence
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Example 1: MESI Coherence
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Example 1: MESI Coherence
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Example 2: MESI Coherence
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Example 2: MESI Coherence
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Example 2: MESI Coherence
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Example 2: MESI Coherence
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Example 2: MESI Coherence
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Example 2: MESI Coherence
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Example 3: MESI Coherence
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Example 3: MESI Coherence
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Example 3: MESI Coherence
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Example 3: MESI Coherence

42

Shared Memory (X=out-of-date)

Cache

Processor

X

Tag

Dirty

State

5

Data

Thread A:

Cache

Processor

-

TagState

-

Data

Thread B:

Store X=5

Read-ExclusiveFill



Example 3: MESI Coherence
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Example 3: MESI Coherence
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Example 3: MESI Coherence
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Example 3: MESI Coherence

46

Shared Memory (X=5)

Cache

Processor

X

Tag

Share

State

5

Data

Thread A:

Cache

Processor

-

TagState

-

Data

Thread B:

Store X=5

Load X

ReadUpdateRead request



Example 3: MESI Coherence
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MESI Permitted States, Transitions
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Local Event Initial State Local Message Remote

Read miss I I → (S, E) READ (S, E) → S
M → S + WB

Read hit S, E, M

Write miss I I → M READEX (S,E) → I
M → I + WB

Write hit S

E, M

S → M

E → M

INVALIDATE S → I



Performance of 

Memory Operations
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Local Caches and Memory Latencies

• Cost of  accessing memory

• Best case

• Data is cached locally: L1 < 10 cycles (remember this)

• Worst case

• Data is accessed from DRAM: 136 – 355 cycles (remember this)
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Interconnect Between Sockets

51

Cross-sockets communication can be 2-hops



Latency of  Remote Access: 

Read (cycles)

• Local cache line state is invalid 

• State is the MESI state of  a cache line in a remote cache

• Cross-socket communication is expensive!

• Xeon: cross-socket latency is 4-7.5 larger than within socket

• Opteron: cross-socket latency even larger than RAM 52



Latency of  Remote Access: 

Write (cycles)

• Local cache line state is invalid 

• State is the MESI state of  a cache line in a remote cache

• Cross-socket communication is expensive!

• Comparable or more expensive than DRAM accesses
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Implications for 

Software Design
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False Sharing
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False Sharing
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False Sharing
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False Sharing
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False Sharing
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False Sharing
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False Sharing
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False Sharing Summary

• False sharing

• Threads on different cores access unrelated objects 

• Objects are located in same cache block

• Block will ping-pong between caches on different cores

• Avoid false sharing by careful data arrangement

• Ensure that unrelated elements are mapped to separate blocks

• E.g., insert padding (unused data) between shared items

• Partition allocations by different threads, e.g., jemalloc
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Implications for Programmers

• Cache coherence is expensive (more than you thought)

• Avoid unnecessary sharing (e.g., false sharing)

• Crossing processors/sockets is a killer

• Can be slower than running the same program on single core!

• Pthreads provides CPU affinity mask

• Pin cooperative threads on cores within the same die

• Later, we will see other implications of  modern architectures 

on software design

• Next, we look at another peculiarity of  modern parallel 

architectures
63



Memory Ordering

64

With thanks to Anton Burtsy, Paul E. McKenney



Coherence versus Consistency

• Recall cache coherence ensures that all processors have a 

consistent view of  a single memory location (e.g., X)

• All loads and stores to X can be put on a timeline (total order) that 

respects the program order of  loads and stores of  each processor

• Defines memory behavior in the presence of  processor caches

• Memory consistency defines the behavior of  reads and writes 

by a processor to different locations (as observed by other 

processors)

• Defines when writes propagate to other processors, what values 

reads can return (or cannot return), whether caches exist or not

• Intuitively, reads should return value of  last write

• But how should last be defined? 65



Sequential Consistency

• A system is sequentially consistent if  the result of  any 

execution is the same as if  all the memory operations were 

executed in some sequential order, and the memory operations 

of  each processor are executed in program order
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P0

write(A, 1)

1 ← read(B)

P1

write(B, 1)

1 ← read(A)

W(A)1 W(B)1 R(B)1 R(A)1

This model is intuitive to programmers, 

but not implemented by real processors, 

as we see next



Memory Ordering With 

Sequential Consistency

• With sequential consistency, can both reads return 0?

• Suppose this is possible (proof  by contradiction):

• Add edge between ops X and Y to indicate X happens before Y

• 2 edges for program order

• 2 edges for memory ordering dependency, why?

• Happens-before edges form a cycle!

• Would need time warp for both reads to return 0 ☺

• But what happens on real processors? 67

P0

void T1(void) {

    A = 1;

    read(B);

}

P1

void T2(void) {

    B = 1;

    read(A);

}



Pros and Cons of

Sequential Consistency

• Pros: an intuitive model of  parallelism ☺

• Each processor executes memory instructions in order

• Memory ops from all processors appear sequentially ordered

• Cons: programs run terribly slowly 

• Requires each memory operation to complete (results are visible) 

before proceeding with next memory operation in program order

• Requires writes be visible in the same order at other processors

68

P0

void T1(void) {

    A = 1;

    read(B);

}

P1

void T2(void) {

    B = 1;

    read(A);

}



Write Completion

• Say write(A, 1) on CPU0 is a write miss

• Cache coherence protocol sends an invalidate message to other 

CPUs to invalidate their cached copies of  A

• Problem: write completes only after 

CPU0 receives acknowledgment 

from CPU1

• Otherwise, another CPU could 

receive writes out-of-order, 

perform stale reads, etc.

• Result: writes become slow

69

write(A, 1)

apply

invalidateS
ta

ll

CPU0 CPU1

write complete



Processor Optimization: 

Store Buffers
• So, let’s not wait for the 

write completion…

• Record a store in a CPU buffer

• Let CPU proceed immediately

• Send invalidate message, complete 

the store when invalidate message 

is acked, i.e., flush the store from 

the store buffer to the cache

• Causes no issues on uniprocessors

• But what about multiprocessors? 70



Memory Ordering With 

Store Buffer

• Can the assert fail?

• Assert can fail on some processors , let’s look at why

71

P0
void writer(void) {
    A = 1;
    B = 1;
}

P1
void reader(void) {
    while (B == 0)
        continue;
    assert(A == 1);
}



Memory Ordering With 

Store Buffer

72

P1
A = [shared], B = [invalid]
while (B == 0)
// read(B)
    continue;

// receive read_reply(B, 1)
// exit while loop
assert(A == 1); // fails
// receive invalidate(A)How can we fix this problem?

P0
A in [invalid], B in [excl]
A = 1;
// save A in store buffer
// send invalidate(A)

B = 1;
// B in [excl], 
// so update B in cache

// receive read(B)
// B in [shared]
// send read_reply(B, 1)



Memory Ordering With 

Store Buffer
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P0
A in [invalid], B in [excl]
A = 1;
// save A in store buffer
// send invalidate(A)

B = 1;
// B in [excl], 
// so update B in cache
// DO NOT UPDATE CACHE UNTIL
// STORE BUFFER IS DRAINED
// receive read(B)
// B in [shared]
// send read_reply(B, 1)

P1
A = [shared], B = [invalid]
while (B == 0)
// read(B)
    continue;

// receive read_reply(B, 1)
// exit while loop
assert(A == 1);



Write Memory Barrier

• smp_wmb()

• Causes the CPU to flush its store buffer before applying 

subsequent stores to their cache lines

• The CPU can either 

• Stall until the store buffer is empty before proceeding, or

• It can use the store buffer to hold subsequent stores until all the prior 

entries in the buffer had been applied

74



Memory Ordering With 

Write Barrier

• Assert will not fail ☺, let’s look at why

75

P0
void writer(void) {
    A = 1;
    smp_wmb();
    B = 1;
}

P1
void reader(void) {
    while (B == 0)
        continue;
    assert(A == 1);
}



Memory Ordering With 

Write Barrier

76

P0
A in [invalid], B in [excl]
A = 1;
// save A in store buffer
// send invalidate(A)
smp_wmb();
// mark store buffer
B = 1;
// store buffer has marked entries, 
// so save B in store buffer
// receive read(B)
// B in [shared]
// send read_reply(B, 0)
// receive invalidate_ack(A)
// flush store buffer

P1
A = [shared], B = [invalid]
while (B == 0)
// read(B)
    continue;

// receive invalidate(A)
// send invalidate_ack(A)

// receive read_reply(B, 1)
// exit while loop
assert(A == 1); // succeeds
// read(A), reads 1



Invalidate Messages

• Invalidate messages (and their 

response) can be slow

• CPU1 cache could be overloaded, 

so it could respond slowly

• While waiting for invalidate 

acknowledgements, CPU0

can run out of  space in store 

buffer, stalling execution

77

write(A, 1)

apply

invalidateS
ta

ll

CPU0 CPU1



Processor Optimization: 

Invalidate Queues
• So, let’s not wait to invalidate the cache…

• Receive side

• Stores invalidate request in a queue

• Acknowledges invalidate right away

• Applies invalidate later
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Invalidate Processing

79

write(A, 1)

apply

invalidateS
ta

ll

CPU0 CPU1

write(A, 1)

apply

invalidate

S
ta

ll

CPU0 CPU1

Write invalidation Write invalidation

with invalidate queue



Memory Ordering With 

Invalidate Queue

80

P0
A in [invalid], B in [excl]
A = 1;
// save A in store buffer
// send invalidate(A)
smp_wmb();
// mark store buffer

// receive invalidate_ack(A)
// flush store buffer
B = 1;
// b in [excl], update B in cache
// receive read(B)
// B in [shared]
// send read_reply(B, 1)

P1
A = [shared], B = [invalid]
while (B == 0)
// read(B)
    continue;
// receive invalidate(A)
// queue invalidate(A)
// send invalidate_ack(A)

// receive read_reply(B, 1)
// exit while loop
assert(A == 1); // failsHow can we fix this problem?



Memory Ordering With 

Invalidate Queue

81

P0
A in [invalid], B in [excl]
A = 1;
// save A in store buffer
// send invalidate(A)
smp_wmb();
// mark store buffer

// receive invalidate_ack(A)
// flush store buffer
B = 1;
// b in [excl], update B in cache
// receive read(B)
// B in [shared]
// send read_reply(B, 1)

P1
A = [shared], B = [invalid]
while (B == 0)
// read(B)
    continue;
// receive invalidate(A)
// queue invalidate(A)
// send invalidate_ack(A)

// receive read_reply(B, 1)
// exit while loop
// DRAIN INVALIDATE QUEUE
assert(A == 1);



Read Memory Barrier

• smp_rmb()

• Marks all the entries currently in the processor’s invalidate 

queue

• Forces any subsequent load to wait until all marked entries 

have been applied to the CPU’s cache

82



Memory Ordering With 

Read & Write Barrier

• Assert will not fail ☺

83

P0
void writer(void) {
    A = 1;
    smp_wmb();
    B = 1;
}

P1
void reader(void) {
    while (B == 0)
        continue;
    smp_rmb();
    assert(A == 1);
}



Memory Ordering Conclusions

• Sequential consistency model makes it easier to write parallel 

programs since it matches the programmer’s mental model of  

parallel program execution

• However, sequential consistency is expensive to implement

• Processors play games by buffering stores and delaying cache 

invalidations to get good performance

• Writes may appear to be performed out of  order, and reads may 

return stale data

• Programmers need to use memory barriers to ensure correct order 

of  cross-CPU memory operations

• Only programming wizards need apply (as we will see next)!
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Memory Consistency and 

Related Resources
• For an introduction to memory consistency models, see:

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

• For an excellent tutorial, see: 
Shared Memory Consistency Models: A Tutorial

Sarita V. Adve, Kourosh Gharachorloo

• For an excellent (online) book, see:
A Primer on Memory Consistency and Cache Coherence

V. Nagarajan, et al

• Gory details about Linux memory barriers:
https://bruceblinn.com/linuxinfo/MemoryBarriers.html

https://www.kernel.org/doc/Documentation/memory-barriers.txt
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https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-7.pdf
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