
Jon Eyolfson

Courtesy: Ashvin Goel

ECE Dept, University of Toronto

ECE 454

Computer Systems

Programming

Performance Implications of

Parallel Architectures

Big Picture

• We know that we need parallelization

• But will more parallelization always yield better performance?

2

of threads

throughput

We will study the reasons

for this behavior

Topics

• Cache coherence

• Performance of memory operations

• Implications for software design

• Memory consistency

3

Cache Coherence

4

Modern Shared Memory

Parallel Architectures
• Provide several processing elements (cores or processors)

• Provide shared memory

• Any processor can directly reference any memory location

• Communication occurs implicitly through loads and stores

• Cores have private caches to improve performance

5

C

P

C

P

C

P

C

PProcessors

Caches

MMemory

48 core AMD Opteron

Cache Coherence Problem

• With multiple cores, data is cached in multiple locations, so

how do you ensure consistency?

6

Example 1: Coherence Problem

7

Shared Memory (X=2)

Cache

Processor

X

Tag

2

Data

Thread A: Thread B:
Load X

Store X=3

Cache

Processor

-

Tag

-

Data

X = ?

Example 2: Coherence Problem

8

Shared Memory (X=2)

Cache

Processor

-

Tag

-

Data

Thread A:

Cache

Processor

-

Tag

-

Data

Thread B:
Load X

Example 2: Coherence Problem

9

Shared Memory (X=2)

Cache

Processor

-

Tag

-

Data

Thread A:

Cache

Processor

-

Tag

-

Data

Thread B:

Read

Load X

Example 2: Coherence Problem

10

Shared Memory (X=2)

Cache

Processor

-

Tag

-

Data

Thread A:

Cache

Processor

X

Tag

2

Data

Thread B:

Read Fill

Load X

Example 2: Coherence Problem

11

Shared Memory (X=2)

Cache

Processor

-

Tag

-

Data

Thread A:

Cache

Processor

X

Tag

2

Data

Thread B:
Store X=3

Example 2: Coherence Problem

12

Shared Memory (X=2)

Cache

Processor

X

Tag

3

Data

Thread A:

Cache

Processor

X

Tag

2

Data

Thread B:
Store X=3

Inconsistency!

Cache (or Memory) Coherence

• The behavior of the system is equivalent to there being only a

single copy of the data except for the performance benefit of

the cache. [Gray and Cheriton 83]

• Cache coherence ensures that all processors have a consistent

view of a single memory location (e.g., X)

• All loads and stores to X can be put on a timeline (total order) that

respects the program order of loads and stores of each processor

13

P0

write(X, 5)

P1

 5 ← read(X)

20 ← read(X)

P2

write(X, 10)

write(X, 20)

w(5) r(5) w(10) w(20) r(20)

Why Cache Coherence?

• With non-cache coherent machines, e.g., Intel Rack Scale, The

Machine from HP, loads and stores are not synchronized

• Loads may read stale data, i.e., store is not visible to later load

• Stores are not sequenced, i.e., stores visible in different orders

• Really complicates the programming model

14

MSI Coherence Protocol

• Ensuring coherence requires hardware support

• Called coherence protocol

• Add three (exclusive) states to each cache line (on each core):

• Invalid – data is not cached

• Modified – core has written to the cache line

• Cache line is inconsistent with primary storage

• Cache line is not shared with other cores

• Shared – core has read from the cache line

• Cache line is consistent with primary storage

• Cache line may be shared with other cores

15

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread A:

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread B:

MSI Coherence Protocol

16

MSI Coherence Protocol

17

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Cache

Processor

-

Tag

Invalid

State

-

Data

Load X

Read

Thread A: Thread B:

MSI Coherence Protocol

18

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Cache

Processor

X

Tag

Shared

State

2

Data

Fill

Load X

Thread A: Thread B:

Read

MSI Coherence Protocol

19

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Cache

Processor

X

Tag

Shared

State

2

Data

Invalidation

Load X

Store X=3Thread A: Thread B:

invalidates all other copies

MSI Coherence Protocol

20

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Cache

Processor

-

Tag

Invalid

State

-

Data

Load X

Store X=3

invalidates all other copies

Thread A: Thread B:

Invalidation Invalidation

MSI Coherence Protocol

21

Shared Memory (X,2 (stale))

Cache

Processor

X

Tag

Modified

State

3

Data

Cache

Processor

-

Tag

Invalid

State

-

Data

Load X

Store X=3Thread A: Thread B:

InvalidationInvalidation

Problem with MSI

• If a core reads a value that is not cached on any core and then

writes to the value, then two cache coherence requests are

generated

• A request to read the value (required)

• A request to write the value (unnecessary invalidation request sent

because the MSI protocol doesn’t know that no one else has a

copy)

22

MESI (aka Illinois) Protocol

• Four (exclusive) states of each cache line:

• Invalid – data is not cached

• Modified – core has written to the cache line

• Cache line is inconsistent with primary storage

• Cache line is not shared with other cores

• Shared – core has read from the cache line

• Cache line is consistent with primary storage

• Cache line may be shared with other cores

• Exclusive: core has read from the cache line

• Cache line is consistent with primary storage

• Cache line is not shared by other cores

• Write to Exclusive state does not generate invalidation request
23

MESI Details: Writing

• An attempt to write to a block that is in Invalid state is

called a write miss

• Must cache the block in Exclusive state before writing to it

• Generates a read-exclusive (or read for ownership) request

• A read request with intent to write to the memory address

• If other caches have copy of data, they send it, invalidate their copy

• Completes when there are no more valid copies

• Can then perform the write and enter the modified state

• This step doesn’t require invalidation request

24

MESI Examples

• Example 1: load on one core followed by load on another core

• Example 2: load on one core followed by store on another core

• Example 3: store on one core followed by load on another core

25

Example 1: MESI Coherence

26

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread A:

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread B:

Example 1: MESI Coherence

27

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread A:

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread B:

Load X

Example 1: MESI Coherence

28

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread A:

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread B:

Load X

Read

Example 1: MESI Coherence

29

Shared Memory (X=2)

Cache

Processor

X

Tag

Excl

State

2

Data

Thread A:

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread B:

Load X

ReadFill

Example 1: MESI Coherence

30

Shared Memory (X=2)

Cache

Processor

X

Tag

Excl

State

2

Data

Thread A:

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread B:

Load X

Load X

Example 1: MESI Coherence

31

Shared Memory (X=2)

Cache

Processor

X

Tag

Excl

State

2

Data

Thread A:

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread B:

Load X

Load X

Read

Example 1: MESI Coherence

32

Shared Memory (X=2)

Cache

Processor

X

Tag

Share

State

2

Data

Thread A:

Cache

Processor

X

Tag

Share

State

2

Data

Thread B:

Load X

Load X

ReadFillNotify Shared

Example 2: MESI Coherence

33

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread A:

Cache

Processor

-

Tag

Invalid

State

-

Data

Thread B:

Example 2: MESI Coherence

34

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Cache

Processor

-

Tag

Invalid

State

-

Data

Load X

Read

Thread A: Thread B:

Example 2: MESI Coherence

35

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Cache

Processor

X

Tag

Excl.

State

2

Data

Fill

Load X

Thread A: Thread B:

Read

Example 2: MESI Coherence

36

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Cache

Processor

X

Tag

Excl.

State

2

Data

Read-Exclusive

Load X

Store X=3

read-exclusive invalidates all other copies

Thread A: Thread B:

Example 2: MESI Coherence

37

Shared Memory (X=2)

Cache

Processor

-

Tag

Invalid

State

-

Data

Cache

Processor

-

Tag

Invalid

State

-

Data

Load X

Store X=3Thread A: Thread B:

Read-Exclusive Invalidation

read-exclusive invalidates all other copies

Example 2: MESI Coherence

38

Shared Memory (X, 2 (out of date))

Cache

Processor

X

Tag

Dirty

State

3

Data

Cache

Processor

-

Tag

Invalid

State

-

Data

Load X

Store X=3

the state ‘dirty’ implies exclusiveness

Fill

Thread A: Thread B:

InvalidationRead-Exclusive

Example 3: MESI Coherence

39

Shared Memory (X=2)

Cache

Processor

-

TagState

-

Data

Thread A:

Cache

Processor

-

TagState

-

Data

Thread B:

Example 3: MESI Coherence

40

Shared Memory (X=2)

Cache

Processor

-

TagState

-

Data

Thread A:

Cache

Processor

-

TagState

-

Data

Thread B:

Store X=5

Example 3: MESI Coherence

41

Shared Memory (X=2)

Cache

Processor

-

TagState

-

Data

Thread A:

Cache

Processor

-

TagState

-

Data

Thread B:

Store X=5

Read-Exclusive

Example 3: MESI Coherence

42

Shared Memory (X=out-of-date)

Cache

Processor

X

Tag

Dirty

State

5

Data

Thread A:

Cache

Processor

-

TagState

-

Data

Thread B:

Store X=5

Read-ExclusiveFill

Example 3: MESI Coherence

43

Shared Memory (X, 2 (out of date))

Cache

Processor

X

Tag

Dirty

State

5

Data

Thread A:

Cache

Processor

-

TagState

-

Data

Thread B:

Store X=5

Load X

Example 3: MESI Coherence

44

Shared Memory (X=out-of-date)

Cache

Processor

X

Tag

Dirty

State

5

Data

Thread A:

Cache

Processor

-

TagState

-

Data

Thread B:

Store X=5

Load X

Read

Example 3: MESI Coherence

45

Shared Memory (X=out-of-date)

Cache

Processor

X

Tag

Dirty

State

5

Data

Thread A:

Cache

Processor

-

TagState

-

Data

Thread B:

Store X=5

Load X

ReadRead request

Example 3: MESI Coherence

46

Shared Memory (X=5)

Cache

Processor

X

Tag

Share

State

5

Data

Thread A:

Cache

Processor

-

TagState

-

Data

Thread B:

Store X=5

Load X

ReadUpdateRead request

Example 3: MESI Coherence

47

Shared Memory (X=5)

Cache

Processor

X

Tag

Share

State

5

Data

Thread A:

Cache

Processor

X

Tag

Share

State

5

Data

Thread B:

Store X=5

Load X

ReadUpdateRead request Fill

MESI Permitted States, Transitions

48

Local Event Initial State Local Message Remote

Read miss I I → (S, E) READ (S, E) → S
M → S + WB

Read hit S, E, M

Write miss I I → M READEX (S,E) → I
M → I + WB

Write hit S

E, M

S → M

E → M

INVALIDATE S → I

Performance of

Memory Operations

49

Local Caches and Memory Latencies

• Cost of accessing memory

• Best case

• Data is cached locally: L1 < 10 cycles (remember this)

• Worst case

• Data is accessed from DRAM: 136 – 355 cycles (remember this)

50

Interconnect Between Sockets

51

Cross-sockets communication can be 2-hops

Latency of Remote Access:

Read (cycles)

• Local cache line state is invalid

• State is the MESI state of a cache line in a remote cache

• Cross-socket communication is expensive!

• Xeon: cross-socket latency is 4-7.5 larger than within socket

• Opteron: cross-socket latency even larger than RAM 52

Latency of Remote Access:

Write (cycles)

• Local cache line state is invalid

• State is the MESI state of a cache line in a remote cache

• Cross-socket communication is expensive!

• Comparable or more expensive than DRAM accesses

53

Implications for

Software Design

54

False Sharing

55

Shared Memory (X=0,Y=0)

Cache

Processor

TagState

-,-

Data

Thread A:

Cache

Processor

TagState Data

Thread B:

-,-

Store X=5

Read-Exclusive

X and Y are on the same cache line

-,--,-

False Sharing

56

Shared Memory (X,Y=out-of-date)

Cache

Processor

X,Y

Tag

Dirty

State

5,0

Data

Thread A:

Cache

Processor

TagState Data

Thread B:

-,-

Store X=5

Read-ExclusiveFill

-,-

False Sharing

57

Shared Memory (X,Y=out-of-date)

Cache

Processor

X,Y

Tag

Dirty

State

5,0

Data

Thread A:

Cache

Processor

TagState Data

Thread B:

-,-

Store X=5

Read-Exclusive

-,-

Store Y=2

Invalidation

False Sharing

58

Shared Memory (X=5,Y=0)

Cache

Processor

-,-

TagState

-,-

Data

Thread A:

Cache

Processor

TagState Data

Thread B:

-,-

Store X=5

Read-Exclusive

-,-

Store Y=2

Invalidationupdate

False Sharing

59

Shared Memory (X,Y=out-of-date)

Cache

Processor

-,-

TagState

-,-

Data

Thread A:

Cache

Processor

TagState Data

Thread B:

5,2

Store X=5

Read-Exclusive

X,Y

Store Y=2

Invalidation fillupdate

False Sharing

60

Shared Memory (X,Y=out-of-date)

Cache

Processor

-,-

TagState

-,-

Data

Thread A:

Cache

Processor

Tag

Dirty

State Data

Thread B:

5,2

Store X=5

Read-Exclusive

X,Y

Store Y=2

Invalidation fillupdate

False Sharing

61

Shared Memory (X,Y=out-of-date)

Cache

Processor

-,-

TagState

-,-

Data

Thread A:

Cache

Processor

TagState Data

Thread B:

-,-

while(1)

 Store X=5

-,-

while(1)

 Store Y=2

X,Y cache line will ping-pong back & forth

False Sharing Summary

• False sharing

• Threads on different cores access unrelated objects

• Objects are located in same cache block

• Block will ping-pong between caches on different cores

• Avoid false sharing by careful data arrangement

• Ensure that unrelated elements are mapped to separate blocks

• E.g., insert padding (unused data) between shared items

• Partition allocations by different threads, e.g., jemalloc

62

Implications for Programmers

• Cache coherence is expensive (more than you thought)

• Avoid unnecessary sharing (e.g., false sharing)

• Crossing processors/sockets is a killer

• Can be slower than running the same program on single core!

• Pthreads provides CPU affinity mask

• Pin cooperative threads on cores within the same die

• Later, we will see other implications of modern architectures

on software design

• Next, we look at another peculiarity of modern parallel

architectures
63

Memory Ordering

64

With thanks to Anton Burtsy, Paul E. McKenney

Coherence versus Consistency

• Recall cache coherence ensures that all processors have a

consistent view of a single memory location (e.g., X)

• All loads and stores to X can be put on a timeline (total order) that

respects the program order of loads and stores of each processor

• Defines memory behavior in the presence of processor caches

• Memory consistency defines the behavior of reads and writes

by a processor to different locations (as observed by other

processors)

• Defines when writes propagate to other processors, what values

reads can return (or cannot return), whether caches exist or not

• Intuitively, reads should return value of last write

• But how should last be defined? 65

Sequential Consistency

• A system is sequentially consistent if the result of any

execution is the same as if all the memory operations were

executed in some sequential order, and the memory operations

of each processor are executed in program order

66

P0

write(A, 1)

1 ← read(B)

P1

write(B, 1)

1 ← read(A)

W(A)1 W(B)1 R(B)1 R(A)1

This model is intuitive to programmers,

but not implemented by real processors,

as we see next

Memory Ordering With

Sequential Consistency

• With sequential consistency, can both reads return 0?

• Suppose this is possible (proof by contradiction):

• Add edge between ops X and Y to indicate X happens before Y

• 2 edges for program order

• 2 edges for memory ordering dependency, why?

• Happens-before edges form a cycle!

• Would need time warp for both reads to return 0 ☺

• But what happens on real processors? 67

P0

void T1(void) {

 A = 1;

 read(B);

}

P1

void T2(void) {

 B = 1;

 read(A);

}

Pros and Cons of

Sequential Consistency

• Pros: an intuitive model of parallelism ☺

• Each processor executes memory instructions in order

• Memory ops from all processors appear sequentially ordered

• Cons: programs run terribly slowly 

• Requires each memory operation to complete (results are visible)

before proceeding with next memory operation in program order

• Requires writes be visible in the same order at other processors

68

P0

void T1(void) {

 A = 1;

 read(B);

}

P1

void T2(void) {

 B = 1;

 read(A);

}

Write Completion

• Say write(A, 1) on CPU0 is a write miss

• Cache coherence protocol sends an invalidate message to other

CPUs to invalidate their cached copies of A

• Problem: write completes only after

CPU0 receives acknowledgment

from CPU1

• Otherwise, another CPU could

receive writes out-of-order,

perform stale reads, etc.

• Result: writes become slow

69

write(A, 1)

apply

invalidateS
ta

ll

CPU0 CPU1

write complete

Processor Optimization:

Store Buffers
• So, let’s not wait for the

write completion…

• Record a store in a CPU buffer

• Let CPU proceed immediately

• Send invalidate message, complete

the store when invalidate message

is acked, i.e., flush the store from

the store buffer to the cache

• Causes no issues on uniprocessors

• But what about multiprocessors? 70

Memory Ordering With

Store Buffer

• Can the assert fail?

• Assert can fail on some processors , let’s look at why

71

P0
void writer(void) {
 A = 1;
 B = 1;
}

P1
void reader(void) {
 while (B == 0)
 continue;
 assert(A == 1);
}

Memory Ordering With

Store Buffer

72

P1
A = [shared], B = [invalid]
while (B == 0)
// read(B)
 continue;

// receive read_reply(B, 1)
// exit while loop
assert(A == 1); // fails
// receive invalidate(A)How can we fix this problem?

P0
A in [invalid], B in [excl]
A = 1;
// save A in store buffer
// send invalidate(A)

B = 1;
// B in [excl],
// so update B in cache

// receive read(B)
// B in [shared]
// send read_reply(B, 1)

Memory Ordering With

Store Buffer

73

P0
A in [invalid], B in [excl]
A = 1;
// save A in store buffer
// send invalidate(A)

B = 1;
// B in [excl],
// so update B in cache
// DO NOT UPDATE CACHE UNTIL
// STORE BUFFER IS DRAINED
// receive read(B)
// B in [shared]
// send read_reply(B, 1)

P1
A = [shared], B = [invalid]
while (B == 0)
// read(B)
 continue;

// receive read_reply(B, 1)
// exit while loop
assert(A == 1);

Write Memory Barrier

• smp_wmb()

• Causes the CPU to flush its store buffer before applying

subsequent stores to their cache lines

• The CPU can either

• Stall until the store buffer is empty before proceeding, or

• It can use the store buffer to hold subsequent stores until all the prior

entries in the buffer had been applied

74

Memory Ordering With

Write Barrier

• Assert will not fail ☺, let’s look at why

75

P0
void writer(void) {
 A = 1;
 smp_wmb();
 B = 1;
}

P1
void reader(void) {
 while (B == 0)
 continue;
 assert(A == 1);
}

Memory Ordering With

Write Barrier

76

P0
A in [invalid], B in [excl]
A = 1;
// save A in store buffer
// send invalidate(A)
smp_wmb();
// mark store buffer
B = 1;
// store buffer has marked entries,
// so save B in store buffer
// receive read(B)
// B in [shared]
// send read_reply(B, 0)
// receive invalidate_ack(A)
// flush store buffer

P1
A = [shared], B = [invalid]
while (B == 0)
// read(B)
 continue;

// receive invalidate(A)
// send invalidate_ack(A)

// receive read_reply(B, 1)
// exit while loop
assert(A == 1); // succeeds
// read(A), reads 1

Invalidate Messages

• Invalidate messages (and their

response) can be slow

• CPU1 cache could be overloaded,

so it could respond slowly

• While waiting for invalidate

acknowledgements, CPU0

can run out of space in store

buffer, stalling execution

77

write(A, 1)

apply

invalidateS
ta

ll

CPU0 CPU1

Processor Optimization:

Invalidate Queues
• So, let’s not wait to invalidate the cache…

• Receive side

• Stores invalidate request in a queue

• Acknowledges invalidate right away

• Applies invalidate later

78

Invalidate Processing

79

write(A, 1)

apply

invalidateS
ta

ll

CPU0 CPU1

write(A, 1)

apply

invalidate

S
ta

ll

CPU0 CPU1

Write invalidation Write invalidation

with invalidate queue

Memory Ordering With

Invalidate Queue

80

P0
A in [invalid], B in [excl]
A = 1;
// save A in store buffer
// send invalidate(A)
smp_wmb();
// mark store buffer

// receive invalidate_ack(A)
// flush store buffer
B = 1;
// b in [excl], update B in cache
// receive read(B)
// B in [shared]
// send read_reply(B, 1)

P1
A = [shared], B = [invalid]
while (B == 0)
// read(B)
 continue;
// receive invalidate(A)
// queue invalidate(A)
// send invalidate_ack(A)

// receive read_reply(B, 1)
// exit while loop
assert(A == 1); // failsHow can we fix this problem?

Memory Ordering With

Invalidate Queue

81

P0
A in [invalid], B in [excl]
A = 1;
// save A in store buffer
// send invalidate(A)
smp_wmb();
// mark store buffer

// receive invalidate_ack(A)
// flush store buffer
B = 1;
// b in [excl], update B in cache
// receive read(B)
// B in [shared]
// send read_reply(B, 1)

P1
A = [shared], B = [invalid]
while (B == 0)
// read(B)
 continue;
// receive invalidate(A)
// queue invalidate(A)
// send invalidate_ack(A)

// receive read_reply(B, 1)
// exit while loop
// DRAIN INVALIDATE QUEUE
assert(A == 1);

Read Memory Barrier

• smp_rmb()

• Marks all the entries currently in the processor’s invalidate

queue

• Forces any subsequent load to wait until all marked entries

have been applied to the CPU’s cache

82

Memory Ordering With

Read & Write Barrier

• Assert will not fail ☺

83

P0
void writer(void) {
 A = 1;
 smp_wmb();
 B = 1;
}

P1
void reader(void) {
 while (B == 0)
 continue;
 smp_rmb();
 assert(A == 1);
}

Memory Ordering Conclusions

• Sequential consistency model makes it easier to write parallel

programs since it matches the programmer’s mental model of

parallel program execution

• However, sequential consistency is expensive to implement

• Processors play games by buffering stores and delaying cache

invalidations to get good performance

• Writes may appear to be performed out of order, and reads may

return stale data

• Programmers need to use memory barriers to ensure correct order

of cross-CPU memory operations

• Only programming wizards need apply (as we will see next)!

84

Memory Consistency and

Related Resources
• For an introduction to memory consistency models, see:

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

• For an excellent tutorial, see:
Shared Memory Consistency Models: A Tutorial

Sarita V. Adve, Kourosh Gharachorloo

• For an excellent (online) book, see:
A Primer on Memory Consistency and Cache Coherence

V. Nagarajan, et al

• Gory details about Linux memory barriers:
https://bruceblinn.com/linuxinfo/MemoryBarriers.html

https://www.kernel.org/doc/Documentation/memory-barriers.txt
85

https://www.cs.utexas.edu/~bornholt/post/memory-models.html
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-7.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-7.pdf
https://pages.cs.wisc.edu/~markhill/papers/primer2020_2nd_edition.pdf
https://pages.cs.wisc.edu/~markhill/papers/primer2020_2nd_edition.pdf
https://bruceblinn.com/linuxinfo/MemoryBarriers.html
https://www.kernel.org/doc/Documentation/memory-barriers.txt

	Slide 1: ECE 454 Computer Systems Programming Performance Implications of Parallel Architectures
	Slide 2: Big Picture
	Slide 3: Topics
	Slide 4: Cache Coherence
	Slide 5: Modern Shared Memory Parallel Architectures
	Slide 6: Cache Coherence Problem
	Slide 7: Example 1: Coherence Problem
	Slide 8: Example 2: Coherence Problem
	Slide 9: Example 2: Coherence Problem
	Slide 10: Example 2: Coherence Problem
	Slide 11: Example 2: Coherence Problem
	Slide 12: Example 2: Coherence Problem
	Slide 13: Cache (or Memory) Coherence
	Slide 14: Why Cache Coherence?
	Slide 15: MSI Coherence Protocol
	Slide 16: MSI Coherence Protocol
	Slide 17: MSI Coherence Protocol
	Slide 18: MSI Coherence Protocol
	Slide 19: MSI Coherence Protocol
	Slide 20: MSI Coherence Protocol
	Slide 21: MSI Coherence Protocol
	Slide 22: Problem with MSI
	Slide 23: MESI (aka Illinois) Protocol
	Slide 24: MESI Details: Writing
	Slide 25: MESI Examples
	Slide 26: Example 1: MESI Coherence
	Slide 27: Example 1: MESI Coherence
	Slide 28: Example 1: MESI Coherence
	Slide 29: Example 1: MESI Coherence
	Slide 30: Example 1: MESI Coherence
	Slide 31: Example 1: MESI Coherence
	Slide 32: Example 1: MESI Coherence
	Slide 33: Example 2: MESI Coherence
	Slide 34: Example 2: MESI Coherence
	Slide 35: Example 2: MESI Coherence
	Slide 36: Example 2: MESI Coherence
	Slide 37: Example 2: MESI Coherence
	Slide 38: Example 2: MESI Coherence
	Slide 39: Example 3: MESI Coherence
	Slide 40: Example 3: MESI Coherence
	Slide 41: Example 3: MESI Coherence
	Slide 42: Example 3: MESI Coherence
	Slide 43: Example 3: MESI Coherence
	Slide 44: Example 3: MESI Coherence
	Slide 45: Example 3: MESI Coherence
	Slide 46: Example 3: MESI Coherence
	Slide 47: Example 3: MESI Coherence
	Slide 48: MESI Permitted States, Transitions
	Slide 49: Performance of Memory Operations
	Slide 50: Local Caches and Memory Latencies
	Slide 51: Interconnect Between Sockets
	Slide 52: Latency of Remote Access: Read (cycles)
	Slide 53: Latency of Remote Access: Write (cycles)
	Slide 54: Implications for Software Design
	Slide 55: False Sharing
	Slide 56: False Sharing
	Slide 57: False Sharing
	Slide 58: False Sharing
	Slide 59: False Sharing
	Slide 60: False Sharing
	Slide 61: False Sharing
	Slide 62: False Sharing Summary
	Slide 63: Implications for Programmers
	Slide 64: Memory Ordering
	Slide 65: Coherence versus Consistency
	Slide 66: Sequential Consistency
	Slide 67: Memory Ordering With Sequential Consistency
	Slide 68: Pros and Cons of Sequential Consistency
	Slide 69: Write Completion
	Slide 70: Processor Optimization: Store Buffers
	Slide 71: Memory Ordering With Store Buffer
	Slide 72: Memory Ordering With Store Buffer
	Slide 73: Memory Ordering With Store Buffer
	Slide 74: Write Memory Barrier
	Slide 75: Memory Ordering With Write Barrier
	Slide 76: Memory Ordering With Write Barrier
	Slide 77: Invalidate Messages
	Slide 78: Processor Optimization: Invalidate Queues
	Slide 79: Invalidate Processing
	Slide 80: Memory Ordering With Invalidate Queue
	Slide 81: Memory Ordering With Invalidate Queue
	Slide 82: Read Memory Barrier
	Slide 83: Memory Ordering With Read & Write Barrier
	Slide 84: Memory Ordering Conclusions
	Slide 85: Memory Consistency and Related Resources

