
Jon Eyolfson

Courtesy: Ashvin Goel

ECE Dept, University of Toronto

ECE 454

Computer Systems

Programming

Better Locking

With thanks to Angela Demke Brown, Tom Hart, Paul McKenney

Overview

• Overview of locking implementations

• Spinlocks

• Cost of locking

• Ticket locks

• Queuing locks

• MCS locks

• Some parallel programming techniques

2

Review

• Processes communicate and coordinate via IPC

• Pipes, sockets, signals, etc.

• Threads communicate and coordinate via memory

• Requires mutual exclusion to prevent data races, inconsistencies

• Use locks

• Requires synchronization to enforce ordering

• Use barriers, condition variables, semaphores

3

Questions

• How are locks implemented?

• What is the cost of locking?

• How can we develop more efficient locks?

4

Uniprocessor Locking Solutions

• Within kernel:

• When data is shared between multiple threads

• Disallow context switches in critical sections

• When data is shared between threads and interrupt handlers

• Disable interrupts and disallow context switches in critical sections

• At user level:

• Use blocking locks

• Implemented by the kernel using the mechanisms described above

• Works because there is no true parallelism

5

Multiprocessor Locking Solutions

• True concurrency, i.e., parallelism – code executes

simultaneously on multiple CPUs

• Disabling interrupts only affects local CPU

• Disallowing context switch doesn’t help since multiple threads are

executing anyway

• Need some help from hardware

• Hardware provides special atomic instructions such as atomic

test_and_set (TAS), compare_and_swap (CAS), etc.

• Atomic operations performed using these instructions directly

• E.g. set/increment/decrement variable

• Mutual exclusion for multiple instructions requires locking

• Use atomic instructions to implement spinlocks 6

Atomic Instructions

7

test_and_set (TAS):

boolean TAS(boolean *lock)
{ /* pseudocode: atomic inst. */
 boolean old = *lock;
 *lock = TRUE;
 return old;
}

fetch_and_increment:

int fetch_and_increment(int *value)
{ /* pseudocode: atomic inst. */
 int old = *value;
 *value = *value + 1;
 return old;
}

fetch_and_store (FAS):

int FAS(int *p, int value)
{ /* pseudocode: atomic inst. */
 int old = *p;
 *p = value;
 return old;
}

compare_and_swap (CAS):

int CAS(int *p, int old, int new)
{ /* pseudocode: atomic inst. */
 if (*p == old) {
 *p = new;
 return TRUE;
 } else {
 return FALSE;
 }
}

Spinlocks

• Loop, testing lock variable until

available

• When to use it (vs blocking locks)?

• Good if nothing else to do

• Or if expected wait is short

• < 2 context switches

• Or if you aren’t allowed to block

• E.g., interrupt handler

• Rest of the slides focus on

improving spinlock performance

boolean lock;

void acquire(boolean *lock) {
 while(TAS(lock));
}

void release(boolean *lock) {
 *lock = false;
}

8

Cost of Locking

• TAS(lock) operates on memory location atomically

• Hardware implementation

• Read-exclusive broadcasts invalidations to all caches

• Modify marks local cache dirty

• With contention, cache line ping pongs with each TAS

operation! 9

Read-exclusive (invalidations)
Modify (change state)
Memory barrier (ensures that reads/writes before/after
 atomic instruction are not reordered)
 complete all the mem. op. before this TAS
 cancel all the mem. op. after this TAS

Cost of Locking

• Leads to significant cache traffic, contention on memory bus

• Slows down other memory operations as well

Memory

P0 P1 P2 P3

cache cache cache cache

10

How Bad is it?

• Recall: TAS essentially is a Store + Memory Barrier

• Takeaway: heavy lock contention may lead to worse

performance than serial execution that accesses local cache

11

TAS

Store

Big Picture

• We know that we need parallelization

• But will more parallelization always yield better performance?

12

of threads

throughput

Now you know the reason.

Eventually, lock contention

degrades performance.

Building Better Spinlocks

But how?

13

Spinlock with Backoff

• Idea: if lock is held, wait awhile before probing again

• Best performance uses exponential backoff

• Can cause fairness problems – why?

void acquire(boolean *lock) {
 int delay = 1; // not shared by threads
 while(TAS(lock)) {
 pause(delay);
 delay = delay * 2;
 }
}

14

TTAS Spinlock

• Idea: spin in cache, access memory only when lock is likely to

be available

• Known as test_and_test_and_set (TTAS)

boolean lock;

void acquire(boolean *lock) {
 do {
 while(*lock == TRUE);
 } while (TAS(lock));
}

void release(boolean *lock) {
 *lock = false;
}

Memory

P0 P1 P2 P3

cache cache cache cache

15

lock in Shared

cache line state

Ticket Locks

• Resolve fairness issues with previous spinlocks (FIFO order)

• Lock consists of two counters: next_ticket, now_serving

struct lock {
 int next_ticket = 0;
 int now_serving = 0;
};

void acquire(struct lock *l) {
 int my_ticket = fetch_and_increment(&l->next_ticket);
 while(l->now_serving != my_ticket) ; //spin, only reads performed
}
void release(struct lock *l) {
 l->now_serving++; // why not atomic?
} 16

atomically increments next_ticket,

returns old value of next_ticket

Ticket Locks

• Reduces # of atomic operations compared to TTAS locks

• Problems? How can we mitigate them?

struct lock {
 int next_ticket = 0;
 int now_serving = 0;
};

void acquire(struct lock *l) {
 int my_ticket = fetch_and_increment(&l->next_ticket);
 while (l->now_serving != my_ticket) ; //spin
}
void release(struct lock *l) {
 l->now_serving++;
} 17

atomically increments next_ticket,

returns old value of next_ticket

Queuing Locks

• Idea: Each CPU spins on a different location

• Release unblocks next waiter only

• Guarantees FIFO ordering (similar to ticket locks)

• Reduces cache coherence traffic, memory contention, why?

• Lock L points to tail of list

• Lock acquire: add node for processor to tail of list

• Lock release: unblocks next node in list

18

L = lock
R = running
S = spinning

(a) Free lock

(null pointer)

L L

(b) Held lock

no waiters

R

(c) Held lock

2 waiters spinning

L

R S S

MCS Lock Operations

• Each thread has own node

• Tail is shared by all threads

19

tail

1

run

2

spin

3

spin

4

arriving

• 4 arrives, attempting to acquire lock

Diagrams: Redrawn from originals ©Bill Scherer – Rice University

MCS Lock Operations: acquire()

20

tail

1

run

2

spin

3

spin

4

arriving

• 4 swaps tail pointer to point to own node

• Acquires pointer to 3 (predecessor) from swap on tail

• Note: 3 can’t leave immediately because tail no longer points to 3

MCS Lock Operations: acquire()

tail

1

run

2

spin

3

spin

4

arriving

21

• 4 links behind 3 (predecessor)

MCS Lock Operations: acquire()

tail

1

run

2

spin

3

spin

4

spin

22

• 4 now spins until 3 signals that the lock is available by setting a flag

in 4’s node

MCS Lock Operations: release()

tail

1

leaving

2

spin

3

spin

4

spin

23

• 1 prepares to release lock

• Its next field is set (in this diagram), so signal successor directly

MCS Lock Operations: release()

tail

1

gone

2

run

3

spin

4

spin

24

• 2 can now run, holds the lock

• 2 will signal 3 in turn, when it is done with lock

• No other process sees that lock holder has changed

MCS Lock Operations: release()

tail

3

leaving

25

• Suppose 3 has lock, and it is the only process in the queue

• When it leaves, it sets the tail to NULL

MCS Lock Operations: release()

tail

3

leaving

4

arriving

26

• Suppose 3 (last process) has lock and is leaving as Process 4 arrives

• Process 4 sets tail to itself, but Process 3’s next pointer is still NULL

• Process 3 attempts compare_and_swap on tail pointer to set it to

NULL, but finds that tail no longer points to self

MCS Lock Operations: release()

tail

3

leaving

4

spin

27

• Suppose 3 (last process) has lock and is leaving as Process 4 arrives

• Process 4 sets tail to itself, but Process 3’s next pointer is still NULL

• Process 3 attempts compare_and_swap on tail pointer to set it to

NULL, but finds that tail no longer points to self

• 3 now waits until its successor pointer is valid; 3 signals 4

MCS Lock Pseudocode

• Shared variable “tail” is a pointer to last qnode in list

• i.e. “tail” stores address of last qnode

• Need to pass address of tail to modify tail pointer itself

28

struct qnode {
 int locked; // lock flag
 struct qnode *next; // next node in linked list
}
void acquire(struct qnode **tail, struct qnode *my_node) {
 my_node->next = NULL;
 // atomically retrieve old tail, and make tail point to my_node
 struct qnode *pred = fetch_and_store(tail, my_node);
 if (pred != NULL) { // queue not empty
 my_node->locked = TRUE; // initialize to locked
 pred->next = my_node; // append my_node to queue
 while (my_node->locked); //spin until pred sets locked to FALSE
 }
}

Example: Simultaneous Acquire

29

T1: my_node->next = NULL;

 T1: pred = FAS(tail, my_node);

Initial: tail == NULL

T0: my_node->next = NULL;

 T0: pred = FAS(tail, my_node);

• fetch_and_store (FAS) executes atomically in some order…

• Either T0’s FAS operation completes first, or T1’s does

• Suppose T0 first:

• For T0, old value of tail is NULL, so pred == NULL

• Tail is set to point at T0’s qnode

• T0 acquires the lock

• For T1, old value of tail (pred) is T0’s qnode

• T1 spins on its qnode’s locked value

• Note: No additions are lost, but queue may not be fully linked together

until all threads complete pred->next update

MCS Lock Release

30

struct qnode {
 int locked;
 struct qnode *next;
}
void release(struct qnode **tail, struct qnode *my_node) {
 if (my_node->next == NULL) {
 // no known successor, check if tail still points to me
 if (compare_and_swap(tail, my_node, NULL))
 return; // CAS returns TRUE iff tail updated to NULL
 // CAS fails if someone else is adding themselves to the list
 // wait for them to finish
 while (my_node->next == NULL) ; //spin
 }
 my_node->next->locked = FALSE; // release next waiter
}

Release may happen after new waiter makes ‘tail’

point to its qnode, but before waiter updates the

predecessor (lock holder) qnode’s next field

Simultaneous Release and Acquire

31

acquire() has completed fetch_and_store, knows pred, but has not

updated pred->next yet

release() sees no waiters (next == NULL), but knows acquire is in

progress since the tail is not pointing at its own qnodepred

L

R S

T0 acquire:

my_node->next = NULL;

struct qnode *pred = FAS(&tail, my_node);

if (pred != NULL){ //queue !empty

 my_node->locked = TRUE;

 pred->next = my_node;

 while (my_node->locked); //spin

}

T1 release:

if (my_node->next == NULL) {

 if (CAS(&tail, my_node, NULL))

 return;

 while (my_node->next == NULL);

}

my_node->next->locked = FALSE;

Are any memory ordering instructions needed?

MCS Conclusions

• Grants requests in FIFO order

• Space: 2p + n words of space (p processes and n locks)

• Requires a local "queue node" to be passed in as a parameter

• Alternatively, allocate these nodes dynamically in acquire_lock,

and look them up in a table in release_lock

• Atomic primitives: Need fetch_and_store, compare_and_swap

• Spins only on local locations

• Key lesson: Important to reduce memory traffic during

synchronization

• Widely-used: e.g., monitors in Java VMs are variants of MCS

32

What about Pthreads?

• Most widely used API for multithreaded C code

• Basic lock is pthread_mutex_t

• How is it implemented in Linux glibc?

• Mix of techniques discussed here

• __pthread_lock

• First does adaptive number of spins, using TTAS

• If not successful, adds self to linked list and suspends self

• Similar in structure to MCS locks, used differently

• Main benefit is ability for waits to timeout and set priority

• __pthread_unlock

• wakes waiting thread with highest priority, if any
33

Some Parallel

Programming Techniques
• Counter used by N threads

• Basic operation: counter++

• Needs to be in critical section: lock; counter++; unlock, but only

if exact counter value is critical

• Alternative, cache friendlier approach if #incr >> #reads:

• Use 1 counter per thread, properly padded

• Increment only local counter → no locks needed

• Approximate reads: sum up all local counters → no locks needed

• Barriers

• N threads: lock; b_counter++; unlock; while (b_counter<N):

• Alternative: use tree of barriers
34

Structuring Data for Caches

• S1: segregate read-mostly data from frequently modified data

• E.g., if linked list payloads modified often, then separate linked

list pointers and payload

• Exact opposite of what you’d do on a uniprocessor

• S2: segregate independently accessed data from each other

• Avoids false sharing

• S3: use per core data wherever possible

• E.g., one ready queue per core on Linux, jemalloc arenas

• S4: privatize write-mostly data

• E.g., counter example above
35

Locking Data

• L1: use per-core reader/writer locks for read-mostly critical

sections

• For read access, acquire local lock

• For write access, acquire all locks (writes are expensive)

• L2: segregate contended locks from associated data

• Prevents threads that are trying to acquiring lock from interfering

with writing thread

36

Resources

• Pseudocode for the locks in this lecture and other variants on

Michael Scott’s webpage

• https://www.cs.rochester.edu/research/synchronization/pseudoc

ode/queues.html

• See CLH and IBM K42 MCS variants

• Other references: http://locklessinc.com/articles/locks/

• HP Labs atomic_ops project (Hans Boehm)

• http://shiftleft.com/mirrors/www.hpl.hp.com/research/linux/at

omic_ops/index.php4

• C11/C++11 language includes atomic ops

• Supported by the compiler
37

	Slide 1: ECE 454 Computer Systems Programming Better Locking
	Slide 2: Overview
	Slide 3: Review
	Slide 4: Questions
	Slide 5: Uniprocessor Locking Solutions
	Slide 6: Multiprocessor Locking Solutions
	Slide 7: Atomic Instructions
	Slide 8: Spinlocks
	Slide 9: Cost of Locking
	Slide 10: Cost of Locking
	Slide 11: How Bad is it?
	Slide 12: Big Picture
	Slide 13: Building Better Spinlocks But how?
	Slide 14: Spinlock with Backoff
	Slide 15: TTAS Spinlock
	Slide 16: Ticket Locks
	Slide 17: Ticket Locks
	Slide 18: Queuing Locks
	Slide 19: MCS Lock Operations
	Slide 20: MCS Lock Operations: acquire()
	Slide 21: MCS Lock Operations: acquire()
	Slide 22: MCS Lock Operations: acquire()
	Slide 23: MCS Lock Operations: release()
	Slide 24: MCS Lock Operations: release()
	Slide 25: MCS Lock Operations: release()
	Slide 26: MCS Lock Operations: release()
	Slide 27: MCS Lock Operations: release()
	Slide 28: MCS Lock Pseudocode
	Slide 29: Example: Simultaneous Acquire
	Slide 30: MCS Lock Release
	Slide 31: Simultaneous Release and Acquire
	Slide 32: MCS Conclusions
	Slide 33: What about Pthreads?
	Slide 34: Some Parallel Programming Techniques
	Slide 35: Structuring Data for Caches
	Slide 36: Locking Data
	Slide 37: Resources

