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Overview

• Overview of  locking implementations

• Spinlocks

• Cost of  locking

• Ticket locks

• Queuing locks

• MCS locks

• Some parallel programming techniques
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Review

• Processes communicate and coordinate via IPC

• Pipes, sockets, signals, etc.

• Threads communicate and coordinate via memory

• Requires mutual exclusion to prevent data races, inconsistencies

• Use locks

• Requires synchronization to enforce ordering

• Use barriers, condition variables, semaphores
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Questions

• How are locks implemented?

• What is the cost of  locking?

• How can we develop more efficient locks?
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Uniprocessor Locking Solutions

• Within kernel:

• When data is shared between multiple threads

• Disallow context switches in critical sections

• When data is shared between threads and interrupt handlers

• Disable interrupts and disallow context switches in critical sections

• At user level:

• Use blocking locks

• Implemented by the kernel using the mechanisms described above

• Works because there is no true parallelism
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Multiprocessor Locking Solutions

• True concurrency, i.e., parallelism – code executes 

simultaneously on multiple CPUs

• Disabling interrupts only affects local CPU 

• Disallowing context switch doesn’t help since multiple threads are 

executing anyway

• Need some help from hardware

• Hardware provides special atomic instructions such as atomic 

test_and_set (TAS), compare_and_swap (CAS), etc.

• Atomic operations performed using these instructions directly

• E.g. set/increment/decrement variable

• Mutual exclusion for multiple instructions requires locking

• Use atomic instructions to implement spinlocks 6



Atomic Instructions
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test_and_set (TAS):

boolean TAS(boolean *lock)
{ /* pseudocode: atomic inst. */
 boolean old = *lock;
 *lock = TRUE;
 return old;
}

fetch_and_increment:

int fetch_and_increment(int *value)
{ /* pseudocode: atomic inst. */
 int old = *value;
 *value = *value + 1;
 return old;
}

fetch_and_store (FAS):

int FAS(int *p, int value)
{ /* pseudocode: atomic inst. */
 int old = *p;
 *p = value;
 return old;
}

compare_and_swap (CAS):

int CAS(int *p, int old, int new)
{ /* pseudocode: atomic inst. */
    if (*p == old) {
        *p = new;
        return TRUE;
    } else {
        return FALSE;
    }
}



Spinlocks

• Loop, testing lock variable until 

available

• When to use it (vs blocking locks)?

• Good if  nothing else to do

• Or if  expected wait is short 

• < 2 context switches

• Or if  you aren’t allowed to block

• E.g., interrupt handler

• Rest of  the slides focus on 

improving spinlock performance

boolean lock;

void acquire(boolean *lock) {
 while(TAS(lock));
}

void release(boolean *lock) {
 *lock = false;
}
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Cost of Locking

• TAS(lock) operates on memory location atomically

• Hardware implementation

• Read-exclusive broadcasts invalidations to all caches

• Modify marks local cache dirty

• With contention, cache line ping pongs with each TAS 

operation! 9

Read-exclusive (invalidations)
Modify (change state)
Memory barrier (ensures that reads/writes before/after
                atomic instruction are not reordered)
  complete all the mem. op. before this TAS
  cancel all the mem. op. after this TAS



Cost of Locking

• Leads to significant cache traffic, contention on memory bus

• Slows down other memory operations as well

Memory

P0 P1 P2 P3

cache cache cache cache
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How Bad is it?

• Recall: TAS essentially is a Store + Memory Barrier

• Takeaway: heavy lock contention may lead to worse 

performance than serial execution that accesses local cache
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TAS

Store



Big Picture

• We know that we need parallelization 

• But will more parallelization always yield better performance?
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# of  threads

throughput

Now you know the reason.

Eventually, lock contention 

degrades performance.



Building Better Spinlocks

But how?
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Spinlock with Backoff

• Idea: if  lock is held, wait awhile before probing again

• Best performance uses exponential backoff

• Can cause fairness problems – why?

void acquire(boolean *lock) {
    int delay = 1; // not shared by threads
    while(TAS(lock)) {
        pause(delay);
        delay = delay * 2;
    }
}
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TTAS Spinlock

• Idea: spin in cache, access memory only when lock is likely to 

be available

• Known as test_and_test_and_set (TTAS)

boolean lock;

void acquire(boolean *lock) {
    do {
     while(*lock == TRUE);
    } while (TAS(lock));
}

void release(boolean *lock) {
 *lock = false;
}

Memory

P0 P1 P2 P3

cache cache cache cache
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lock in Shared 

cache line state



Ticket Locks

• Resolve fairness issues with previous spinlocks (FIFO order)

• Lock consists of  two counters: next_ticket, now_serving

struct lock {
    int next_ticket = 0;
    int now_serving = 0;
};

void acquire(struct lock *l) {
    int my_ticket = fetch_and_increment(&l->next_ticket);
    while(l->now_serving != my_ticket) ; //spin, only reads performed
}
void release(struct lock *l) {
    l->now_serving++;               // why not atomic?
} 16

atomically increments next_ticket, 

returns old value of  next_ticket



Ticket Locks

• Reduces # of  atomic operations compared to TTAS locks

• Problems? How can we mitigate them?

struct lock {
    int next_ticket = 0;
    int now_serving = 0;
};

void acquire(struct lock *l) {
    int my_ticket = fetch_and_increment(&l->next_ticket);
    while (l->now_serving != my_ticket) ; //spin
}
void release(struct lock *l) {
    l->now_serving++;
} 17

atomically increments next_ticket, 

returns old value of  next_ticket



Queuing Locks

• Idea:  Each CPU spins on a different location

• Release unblocks next waiter only

• Guarantees FIFO ordering  (similar to ticket locks)

• Reduces cache coherence traffic, memory contention, why?

• Lock L points to tail of  list

• Lock acquire: add node for processor to tail of  list

• Lock release: unblocks next node in list
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L = lock
R = running
S = spinning

(a)  Free lock

(null pointer) 

L L

(b) Held lock

no waiters 

R

(c) Held lock 

2 waiters spinning

L

R S S



MCS Lock Operations

• Each thread has own node

• Tail is shared by all threads
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tail

1

run

2

spin

3

spin

4

arriving

• 4 arrives, attempting to acquire lock

Diagrams: Redrawn from originals ©Bill Scherer – Rice University 



MCS Lock Operations: acquire()
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tail

1

run

2

spin

3

spin

4

arriving

• 4 swaps tail pointer to point to own node

• Acquires pointer to 3 (predecessor) from swap on tail

• Note: 3 can’t leave immediately because tail no longer points to 3



MCS Lock Operations: acquire()

tail
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run
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spin

3

spin

4

arriving

21

• 4 links behind 3 (predecessor)



MCS Lock Operations: acquire()

tail

1

run

2

spin

3

spin

4

spin
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• 4 now spins until 3 signals that the lock is available by setting a flag 

in 4’s node



MCS Lock Operations: release()

tail

1

leaving

2

spin

3

spin

4

spin
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• 1 prepares to release lock

• Its next field is set (in this diagram), so signal successor directly



MCS Lock Operations: release()

tail

1

gone

2

run

3

spin

4

spin
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• 2 can now run, holds the lock

• 2 will signal 3 in turn, when it is done with lock

• No other process sees that lock holder has changed



MCS Lock Operations: release()

tail

3

leaving
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• Suppose 3 has lock, and it is the only process in the queue

• When it leaves, it sets the tail to NULL



MCS Lock Operations: release()

tail

3

leaving

4

arriving
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• Suppose 3 (last process) has lock and is leaving as Process 4 arrives

• Process 4 sets tail to itself, but Process 3’s next pointer is still NULL

• Process 3 attempts compare_and_swap on tail pointer to set it to 

NULL, but finds that tail no longer points to self



MCS Lock Operations: release()

tail

3

leaving

4

spin
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• Suppose 3 (last process) has lock and is leaving as Process 4 arrives

• Process 4 sets tail to itself, but Process 3’s next pointer is still NULL

• Process 3 attempts compare_and_swap on tail pointer to set it to 

NULL, but finds that tail no longer points to self

• 3 now waits until its successor pointer is valid; 3 signals 4



MCS Lock Pseudocode

• Shared variable “tail” is a pointer to last qnode in list

• i.e. “tail” stores address of  last qnode

• Need to pass address of  tail to modify tail pointer itself
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struct qnode {
    int locked;            // lock flag
    struct qnode *next;    // next node in linked list
}
void acquire(struct qnode **tail, struct qnode *my_node) {
    my_node->next = NULL;
    // atomically retrieve old tail, and make tail point to my_node
    struct qnode *pred = fetch_and_store(tail, my_node);
    if (pred != NULL) { // queue not empty
        my_node->locked = TRUE;  // initialize to locked
        pred->next = my_node;    // append my_node to queue
        while (my_node->locked); //spin until pred sets locked to FALSE
    }
}



Example: Simultaneous Acquire
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T1: my_node->next = NULL;

 T1: pred = FAS(tail, my_node);

Initial: tail == NULL

T0: my_node->next = NULL;

 T0: pred = FAS(tail, my_node);

• fetch_and_store (FAS) executes atomically in some order…

• Either T0’s FAS operation completes first, or T1’s does

• Suppose T0 first:

• For T0, old value of tail is NULL, so pred == NULL

• Tail is set to point at T0’s qnode

• T0 acquires the lock

• For T1, old value of tail (pred) is T0’s qnode

• T1 spins on its qnode’s locked value

• Note: No additions are lost, but queue may not be fully linked together 

until all threads complete pred->next update



MCS Lock Release
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struct qnode {
    int locked;
    struct qnode *next;
}
void release(struct qnode **tail, struct qnode *my_node) {
    if (my_node->next == NULL) { 
        // no known successor, check if tail still points to me
        if (compare_and_swap(tail, my_node, NULL))
            return; // CAS returns TRUE iff tail updated to NULL
       // CAS fails if someone else is adding themselves to the list
        // wait for them to finish
        while (my_node->next == NULL) ; //spin
    }
    my_node->next->locked = FALSE; // release next waiter
}

Release may happen after new waiter makes ‘tail’ 

point to its qnode, but before waiter updates the 

predecessor (lock holder) qnode’s next field



Simultaneous Release and Acquire
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acquire() has completed fetch_and_store, knows pred, but has not 

updated pred->next yet

release() sees no waiters (next == NULL), but knows acquire is in 

progress since the tail is not pointing at its own qnodepred

L

R S

T0 acquire:

my_node->next = NULL;

struct qnode *pred = FAS(&tail, my_node);

if (pred != NULL){ //queue !empty

  my_node->locked = TRUE;

  pred->next = my_node;

  while (my_node->locked); //spin

}

T1 release:

if (my_node->next == NULL) { 

  if (CAS(&tail, my_node, NULL))

    return;

  while (my_node->next == NULL);

}

my_node->next->locked = FALSE;

Are any memory ordering instructions needed?



MCS Conclusions

• Grants requests in FIFO order

• Space: 2p + n words of  space (p processes and n locks)

• Requires a local "queue node" to be passed in as a parameter

• Alternatively, allocate these nodes dynamically in acquire_lock, 

and look them up in a table in release_lock

• Atomic primitives: Need fetch_and_store, compare_and_swap

• Spins only on local locations

• Key lesson: Important to reduce memory traffic during 

synchronization

• Widely-used: e.g., monitors in Java VMs are variants of  MCS
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What about Pthreads?

• Most widely used API for multithreaded C code

• Basic lock is pthread_mutex_t

• How is it implemented in Linux glibc?

• Mix of  techniques discussed here

• __pthread_lock 

• First does adaptive number of  spins, using TTAS

• If  not successful, adds self  to linked list and suspends self

• Similar in structure to MCS locks, used differently

• Main benefit is ability for waits to timeout and set priority

• __pthread_unlock

• wakes waiting thread with highest priority, if  any
33



Some Parallel 

Programming Techniques
• Counter used by N threads

• Basic operation: counter++

• Needs to be in critical section: lock; counter++; unlock, but only 

if  exact counter value is critical

• Alternative, cache friendlier approach if  #incr >> #reads:

• Use 1 counter per thread, properly padded

• Increment only local counter → no locks needed

• Approximate reads: sum up all local counters → no locks needed

• Barriers

• N threads: lock; b_counter++; unlock; while (b_counter<N):

• Alternative: use tree of  barriers
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Structuring Data for Caches

• S1: segregate read-mostly data from frequently modified data

• E.g., if  linked list payloads modified often, then separate linked 

list pointers and payload

• Exact opposite of  what you’d do on a uniprocessor

• S2: segregate independently accessed data from each other 

• Avoids false sharing

• S3: use per core data wherever possible

• E.g., one ready queue per core on Linux, jemalloc arenas

• S4: privatize write-mostly data

• E.g., counter example above
35



Locking Data

• L1: use per-core reader/writer locks for read-mostly critical 

sections

• For read access, acquire local lock

• For write access, acquire all locks (writes are expensive)

• L2: segregate contended locks from associated data

• Prevents threads that are trying to acquiring lock from interfering 

with writing thread
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Resources

• Pseudocode for the locks in this lecture and other variants on 

Michael Scott’s webpage

• https://www.cs.rochester.edu/research/synchronization/pseudoc

ode/queues.html 

• See CLH and IBM K42 MCS variants

• Other references: http://locklessinc.com/articles/locks/

• HP Labs atomic_ops project (Hans Boehm)

• http://shiftleft.com/mirrors/www.hpl.hp.com/research/linux/at

omic_ops/index.php4

• C11/C++11 language includes atomic ops

• Supported by the compiler
37
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