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Overview

• Challenges with Locking

• Non-Blocking Synchronization

• Read-Copy Update
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Challenges with Locking
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Locking: A Necessary Evil?

• Locks - easy solution to critical section problem

• Protect shared data from corruption due to simultaneous updates

• Protect against inconsistent views of  intermediate states

• But locks have lots of  problems

• 1. Deadlock

• 2. Priority inversion

• 3. Not fault tolerant

• 4. Convoying

• 5. Expensive, even when uncontended

• Not easy to use correctly!
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1. Deadlock
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1. Deadlock

• Textbook definition: Set of  threads blocked waiting for event 

that can only be caused by another thread in the same set

• Solutions exists but add complexity

• E.g., specify lock order
6

/* a threaded program with 
   a potential for deadlock */

Thread1(){
   lock(a);
   lock(b);
   do_work();
   unlock(b);
   unlock(a);
}

Thread2(){
   lock(b);
   lock(a);
   do_work();
   unlock(a);
   unlock(b);
}  



2. Priority Inversion

• Lower priority thread gets spinlock

• Higher priority thread becomes runnable and preempts it

• Needs lock, starts spinning

• Lock holder can’t run and release lock

• Solutions exist but add complexity

• E.g. disable preemption while holding spinlock, implement 

priority inheritance, etc.
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3. Not Fault Tolerant

• If  lock holder crashes, or gets delayed, no one makes progress

• Delays can happen due to preemption, page faults

• Disable such delays, e.g., pin pages in memory

• Avoid critical sections when delays will happen

• Crashes require abort / restart 8
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4. Convoying

• Threads started at different times occasionally access shared 

data

• Expect shared data accesses 

to be spread out over time

• Lock contention 

should be low

• Delay of  lock holder allows 

other threads to catch up

• Lock becomes contended 

and tends to stay that way

• => Convoying
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5. Expensive, 

Even When Uncontended!
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McKenney, 2005 – 8-CPU 1.45 GHz PPC



Critical Section Efficiency

• Assuming little to no contention, and no caching effects in CS

• Ta and Tr can take 100+ cycles, even with no contention

• Critical section efficiency must be addressed!
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Lock acquire (Ta)

Lock release (Tr)

Critical section (Tc)
Efficiency =

𝑇𝑐
𝑇𝑐 + 𝑇𝑎 + 𝑇𝑟



Causes: Deeper Memory Hierarchy

• Memory speeds have not kept up with CPU speeds

• 1984: no caches needed, since instructions slower than memory 

accesses

• after ~2005: 3-4 level cache hierarchies, since instruction speeds 

are orders of  magnitude faster than memory accesses

• Synchronization ops typically execute at memory speed
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Causes: Deeper Pipelines

• 1984: Many cycles per instruction

• 2005: Many instructions per cycle

• 20 stage pipelines

• CPU logic executes instructions out-of-order to keep pipeline full

• Synchronization instructions cannot be reordered

• => Synchronization stalls the pipeline
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Performance

• Main issue with lock performance used to be contention

• Techniques were developed to reduce overheads in contended case

• E.g., MCS locks

• Today, issue is degraded performance even when locks are 

always available

• Together with other concerns about locks
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Locks: A  Necessary Evil?

• Use “lockless” synchronization

• Design data structures so that locks are not required
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Idea: Don’t lock if we don’t need to!



Non-Blocking 

Synchronization
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Non-Blocking Synchronization 

(NBS) Basics
• Think of  NBS as a “lockless” synchronization scheme

• With locking, threads access shared object under mutual exclusion

• With NBS, threads can access shared object concurrently

• Idea: make change optimistically, if  conflict detected, roll back

• Complex updates (e.g. modifying multiple values in a 

structure) are hidden behind a single commit point using 

atomic instructions 17

// atomically increment *counter using CAS
atomic_inc(int *counter) {
 int value;
 do {
  value = *counter; // save value of counter
 } while (!CAS(counter, value, value+1);
}



Example: Lock-Based Stack
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Node *pop() {
  int current = NULL;
  lock(l);
  if (head) {
    current = head;     
    head = head->next;
  }
  unlock(l);
  return current;
}

class Node {
  Node *next;
  int data;
};

Node *head; Lock *l;

void push(Node *node) {
  lock(l);
  node->next = head;
  head = node;
  unlock(l);
}



Example: Lock-Free Stack
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Node *pop() {
  Node *current = head;
  while (current) {
    if (CAS(&head, current, current->next)) {
      return current;
    }
    current = head; // head may have changed
  }
  return NULL;
}

void push(Node *node) {
  do {
    node->next = head;
  } while (!CAS(&head, node->next, node));
}

class Node {
  Node *next;
  int data;
};

Node *head; 

Anything 

wrong?



ABA Problem

• Notice that pop reads head twice

• If  the value of  head hasn’t 

changed, then head is updated

• What if  another thread updates head in between, 

does other work, and then changes head back 

to the old value?
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Node *pop() {
  Node *current = head;
  while (current) {
    if (CAS(&head, current, current->next)) {
      return current;
    }
    …
}



ABA Problem

• Say Ti, Tj are both doing pops and pushes on this stack:

• Ti: starts pop()

• head is A

• current is A

• current->next is B (loaded in reg)

• Ti interrupted before it performs:

CAS(&head, current, current->next),

i.e., before head is assigned to B
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Node *current = head;
  …
  if (CAS(&head, current, current->next))

Ti is interrupted



ABA Problem

• Say Ti, Tj are both doing pops and pushes on this stack:
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ABA Problem

• Say Ti, Tj are both doing pops and pushes on this stack:

• Tj:

• a=pop()
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ABA Problem

• Say Ti, Tj are both doing pops and pushes on this stack:

• Tj:

• a=pop()

• b=pop()
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ABA Problem

• Say Ti, Tj are both doing pops and pushes on this stack:

• Tj:

• a=pop()

• b=pop()

• push(N)
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ABA Problem

• Say Ti, Tj are both doing pops and pushes on this stack:

• Tj:

• a=pop()

• b=pop()

• push(N)

• push(a)

• ‘a’ is the same node 

that was returned 

by first pop()
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ABA Problem

• Say Ti, Tj are both doing pops and pushes on this stack:

• Tj:

• a=pop()

• b=pop()

• push(N)

• push(a)

• Ti resumes: head is A

• current is A, current->next is B

• CAS succeeds, sets head to B!

• Returns A, A->next set to NULL

• Stack should have been N, C 27
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One Solution

• Include a version number with every pointer

• pointer_t = <pointer, version>

• Increment version number every time pointed-to data is modified

• Atomically update pointer and version using double-word CAS

• Consider pop code: CAS(&head, current, current->next)

• Say current = <A, 1>; After head is updated, head = <A, 2>

• Version number ensures CAS will fail if data has changed

• Issues

• Not every architecture provides double-word CAS operation

• Old versions of  pointers need to be freed

• Use garbage collection to reclaim memory later

• May restrict reuse of memory 28



Using NBS

• Generally used for simple, update-heavy data structures

• E.g., linked list

• See https://en.wikipedia.org/wiki/Non-blocking_linked_list

• Hard to design data structures that use NBS
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https://en.wikipedia.org/wiki/Non-blocking_linked_list


When do we need NBS Guarantees?

• When we need linearizability

• Everyone agrees on all intermediate states

• All updates appear instantaneous, occur in total order

• Reads return value of  last completed write

• Imposes dependency between operations

• Limits parallelism

• Do we always need linearizability?

• Consider “top” program that lists all existing processes

30



Read-Copy Update (RCU)
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Read-Copy Update (RCU)

• What is RCU?

• Paul McKenney’s PhD thesis

• A key part of  the Linux scalability effort

• Reader-writer synchronization mechanism

• Supports concurrency between multiple readers + single updater

• Readers use no locks

• Hence best for read-mostly data structures

• Writers create new versions atomically

• Either using atomic instructions or by locking out other writers

• Readers may continue to access old versions

• Old versions must be deleted at some point 
32



Why RCU?

• Consider concurrent hash table example

• Hash function selects bucket (entry in an array)

• Collisions handled by chaining (linked list per bucket)

• Use per-bucket locks to increase concurrency

• But recall costs of  synchronization operations…
33



What about NBS?

• Non-blocking synchronization is possible for hash table 

operations

• But still expensive, even for read-only operations

• Consider concurrent lookup and remove operations:

N

T1: read N

T2: remove N

T1 obtains pointer to Node N. 

Need to ensure N continues to 

exist until T1 is done using it.

T2 must detect that Node N is in 

use and defer deletion.
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Reference Counting Solution

• T1 can increment reference count on N

• Requires atomic update for each node along path to N on a read!

• T2 must defer deletion of  a node with elevated reference count

N

T1: read N

T2: remove N

T1:

atomic_inc(N->refcount)

T2:

while(N->refcount > 1) {};
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Reader/Writer locks? 

• Concurrent reads, exclusive writes

• Lots of  “dead time” as all readers wait for single writer to 

finish

ReaderCPU 3 Reader ReaderSpin Writer

ReaderCPU 2 Reader ReaderBlocked

ReaderCPU 1 Reader ReaderBlocked

ReaderCPU 0 Reader ReaderBlocked
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RCU Design Principle 

• Avoid mutual exclusion!

• No more “dead time”

• But how can this be implemented? 
37

ReaderCPU 3 Reader ReaderWriter

ReaderCPU 2 Reader Reader

ReaderCPU 1 Reader Reader

ReaderCPU 0 Reader Reader



RCU Basics

• Three key ideas

• Use publish/subscribe ordering mechanism

• Orders operations so readers see consistent, atomic updates

• Maintain multiple versions of  recently updated objects

• Ensures readers that are concurrent with writers will read consistent 

(but perhaps stale) data versions

• Wait for previous readers to complete

• For deleting old versions

• All three together ensure that reads can be performed correctly 

without using locks

• See LWN article: http://lwn.net/Articles/262464
38



Understanding the Need for 

Publish/Subscribe

• No locks are being used by reader

• When is it safe to dereference the gp pointer, i.e., is use(p->a) 

guaranteed to return 1?
39

/* definitions */
struct foo { 
  int a;
}; 

/* gp == global ptr */
struct foo *gp = NULL;  

T1 (Writer):
  p = malloc(sizeof(*p)); 
  p->a = 1;
  gp = p;   // gp can be read by others

T2 (Reader):
  retry:
  p = gp; // get ptr to shared data
  if (p == NULL)
    goto retry;
  use(p->a);



Memory Order “Writer Mischief”

T1 (Writer): 

  p = kmalloc(sizeof(*p)); 

  gp = p; 

  p->a = 1;

T1 (Writer):
  p = malloc(sizeof(*p)); 
  p->a = 1;
  gp = p;

Problem 1

Compiler, CPU can reorder memory assignments and reads

T2 (Reader):
  retry:
  p = gp; // get ptr to shared data
  if (p == NULL)
    goto retry;
  use(p->a); // may read unitialized value!
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Memory Order “Reader Mischief”

T2 (Reader): 

  retry:

  p = guess(gp); 

  use(p->a); // old value

  if (p != gp)

    goto retry;

T2 (Reader):
  retry:
  p = gp;
  if (p == NULL)
    goto retry;
  use(p->a);

Problem 2

Compiler, CPU can reorder memory assignments and reads

T1 (Writer):
  p = malloc(sizeof(*p)); 
  p->a = 1;
  gp = p;   // gp can be read by others

// fails!

41



RCU Publish/Subscribe 

Ordering Mechanism

• Enforce ordering with rcu_assign_pointer/rcu_dereference

• They encapsulate memory barriers, ensuring the correct ordering

42

/* definitions */
struct foo { 
  int a; 
}; 

/* gp == global ptr */
struct foo *gp = NULL;  

rcu_assign_pointer(gp,p);

p = rcu_dereference(gp);

T1 (Writer):
  p = malloc(sizeof(*p)); 
  p->a = 1; 
  gp = p;

T2 (Reader):
  retry
  p = gp; 
  if (p == NULL)
    goto retry;
  use(p->a);



Maintaining Multiple Versions

• Two examples using linked list

• Update

• Deletion
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RCU List Element Update

• T1 traversing linked list, T2 updates an element:

44

N

T1: read N

T2: update N



RCU List Element Update

• T1 traversing linked list, T2 updates an element:

45

N’

N

T1: read N

T2: update N

RC: T2 Reads and makes a Copy of  N



RCU List Element Update

• T1 traversing linked list, T2 updates an element:

46

N’

N

T1: read N

T2: update N

RC: T2 Reads and makes a Copy of  N

U: T2 Updates prev to N’ atomically

Why make a copy of  N?

When is it ok to delete N  (and reuse 

the memory for something else)? 



RCU List Element Deletion

• T1 traversing linked list, T2 removes an element:

47

N

T1: read N

T2: remove N



RCU List Element Deletion

• After removal – T1 continues to use N and later nodes in the 

list

48

T2 updates prev to next atomically

N

T1: read N

T2: remove N

When is it ok to delete N  (and reuse 

the memory for something else)? 



Waiting for Previous Readers

• RCU needs to wait for previous readers to reclaim old versions

• RCU uses quiescent-state based reclamation (QSBR) to handle 

these read-reclaim races

• Definition: A quiescent state for a thread T is a state in which 

T holds no references to any shared data

• Definition: A grace period is an interval in which every thread 

has passed through at least one quiescent state

• QSBR idea: elements removed from a data structure can be 

reclaimed after a grace period, since no thread can still be 

holding a reference to the old element at that point
49



Illustration
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QS
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at this point

Element can be 

reclaimed after this point

Time

Grace Period



How to define Quiescent States?

• Application dependent!

• For OS kernels, some natural ones exist

• Assume that references to RCU data structures are only held 

within read or write critical sections

• Read critical section: thread reads an RCU-protected data structure

• Write critical section: thread writes an RCU-protected data structure

• Assume that read critical sections do not block

• i.e., No context switch occurs within a read-side critical section

• Then, a context switch is a quiescent state

• No references are held across a context switch

51



Reader-Side Quiescence Primitives:

Read Lock/Unlock

• rcu_read_lock/unlock disable context switch within read-side 

critical section

• Write can detect that read is in progress (reader is not quiescent) 

and does not delete data that is being accessed by reader
52

/* definitions */
struct foo { 
  int a; 
}; 

/* gp == global ptr */
struct foo *gp = NULL;  

T1 (Writer):
  p = malloc(sizeof(*p)); 
  p->a = 1; 
  rcu_assign_pointer(gp, p);
  // when can we free(p)?

T2 (Reader):
rcu_read_lock(); // notice, no lock var
p = rcu_dereference(gp); 
  if (p != NULL)
    use(p->a);
rcu_read_unlock();

lock/unlock do 

not spin or block!



Writer-Side Quiescence Primitive:

Synchronize RCU
• synchronize_rcu()

• Wait until all pre-existing RCU read-side critical sections complete

• Implementation:

• synchronize_rcu() runs the current thread on all CPUs

• Forces context switches on each of  the CPUs

• Ensures that it waits for the grace period

53

synchronize_rcu() { 
    for_each_online_cpu(cpu)
        run_on(cpu); // runs the current thread on cpu
}



RCU Synchronization

54

rcu_assign_pointer()

rcu_dereference()

synchronize_rcu()rcu_read_lock(),
rcu_read_unlock()



Linux RCU List Update Code

55

// Reader traverses 
// a linked list

rcu_read_lock();
// next line uses 
// rcu_dereference
hlist_for_each_entry_rcu(p,
    q, head, list) {
    // p is a linked 
    // list node
    do_something(p->value);
}
rcu_read_unlock();

// Writer searches and updates 
// a list element

p = search(head, key);
if (p == NULL) {
    /* unlock and return. */
}
q = kmalloc(sizeof(*p), GFP_KERNEL);
*q = *p; // read and copy
q->value = ...;
// atomically replace p with q
// next line uses rcu_assign_pointer
list_replace_rcu(&p->list, &q->list);
// wait for grace period
synchronize_rcu();
// free previous version
kfree(p);



PPC Hash Table with RCU
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Growth of  RCU Use in Linux

Graph from http://www.rdrop.com/users/paulmck/RCU/linuxusage.html 

(Nov 26, 2021, generated daily) 57
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…but Still Small in Comparison

Graph from http://www.rdrop.com/users/paulmck/RCU/linuxusage.html 

(Nov. 26, 2021, generated daily) 58
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When to Use Which Tool?

• Read-mostly situations

• If  algorithm can handle concurrent reads + single updater: RCU

• Update-heavy situations

• Simple data structures and algorithms: NBS

• Complex data structures and algorithms: Locking

• When you only have a hammer, everything looks like a nail

• It’s good to have lots of  tools in your toolbox!
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Some Resources

• LWN article on lockless algorithms

https://lwn.net/Kernel/Index/#Lockless_algorithms

• Load dependent ordering behavior in Alpha:

http://www.cs.umd.edu/~pugh/java/memoryModel/Alpha

Reordering.html

• An excellent book on multi-processor synchronization and 

lockless algorithms: The art of  multiprocessor programming 

by Maurice Herlihy & Nir Shavit

60
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