ECE 454

Computer Systems
Programming

Avoiding Locks

Jon Eyolfson
Courtesy: Ashvin Goel
ECE Dept, University of Toronto

With thanks to Angela Demke Brown, Tom Hart, Paul McKenney

Overview

* Challenges with Locking

* Non-Blocking Synchronization

* Read-Copy Update

Challenges with Locking

Locking: A Necessary Evil?

Locks - easy solution to critical section problem
* Protect shared data from corruption due to simultaneous updates
 Protect against inconsistent views of intermediate states

But locks have lots of problems
1. Deadlock
* 2. Priority inversion

3. Not fault tolerant

4. Convoying

5. Expensive, even when uncontended

Not easy to use correctly!

RO
,u_v_.._,m..m.‘ﬂ.q.._\

-\ |

b \\.\ ﬂ_v,uw J 1» /..\ |

4
=
v
-~ -
< Ui y oy & \
s]-t .l .
: (.- .-
'3 \
: A\
o &1 e
A
: pe ’

R 4

.Y~
O
=
O
g
O
o
—

1. Deadlock

Textbook definition: Set of threads blocked waiting for event
that can only be caused by another thread in the same set

/* a threaded program with
a potential for deadlock */

Threadl(){ Thread2(){
lock(a); lock(b);
lock(b); lock(a);
do_work(); do_work();
unlock(b); unlock(a);
unlock(a); unlock(b);

} }
Solutions exists but add complexity
- E.g., specify lock order

2. Priority Inversion

Lower priority thread gets spinlock

Higher priority thread becomes runnable and preempts it
* Needs lock, starts spinning

* Lock holder can’t run and release lock

Low priority thread 5\/ lock

High priority thread { *lock
spin

Solutions exist but add complexity

- E.g. disable preemption while holding spinlock, implement
priority inheritance, etc.

3. Not Fault Tolerant

» If lock holder crashes, or gets delayed, no one makes progress

v'lock %
Xxlock §
CRASH! spin xlock

spin

* Delays can happen due to preemption, page faults
 Disable such delays, e.g., pin pages in memory
* Avoid critical sections when delays will happen

* (Crashes require abort / restart

4. Convoying

» Threads started at different times occasionally access shared
data

Expect shared data accesses g
to be spread out over time _>~v1lock
» Lock contention i §
should be low |
| xlock
I
I

spin g
xlock

spin

Delay of lock holder allows

other threads to catch up vunlock

vent
* Lock becomes contended enter
vunlock

and tends to stay that way j enter
unlock

9

=> Convoying

5. Expensive,
Even When Uncontended!

Instruction 0.24
Clock Cycle 0.69
Atomic Increment 42.09
Cmpxchg Blind Cache Transfer 56.80
Cmpxchg Cache Transfer and Invalidate 59.10
SMP Memory Barrier (eieio) 75.53
Full Memory Barrier (sync) 92.16
CPU-Local Lock 243 .10

McKenney, 2005 — 8-CPU 1.45 GHz PPC

Critical Section Efficiency

* Assuming little to no contention, and no caching effects in CS

I
T.+ T, + T,

Efficiency =

 Taand Tr can take 100+ cycles, even with no contention

e Critical section efficiency must be addressed!

Causes: Deeper Memory Hierarchy

Then: Now: | CPU CPU
12 12
1.3 1.3

\ |
|

Memory

Memory

 Memory speeds have not kept up with CPU speeds

1984: no caches needed, since instructions slower than memory
accesses

after ~2005: 3-4 level cache hierarchies, since instruction speeds
are orders of magnitude faster than memory accesses

* Synchronization ops typically execute at memory speed

Causes: Deeper Pipelines

Now:
Execute HRetirel [HHHHHHHWHHHHHHHHHHTHH]

* 1984: Many cycles per instruction

* 2005: Many instructions per cycle
» 20 stage pipelines
» CPU logic executes instructions out-of-order to keep pipeline full
* Synchronization instructions cannot be reordered
» => Synchronization stalls the pipeline

Performance

e Main 1ssue with lock performance used to be contention

 Techniques were developed to reduce overheads in contended case
* E.g., MCS locks

» Today, 1ssue i1s degraded performance even when locks are
always available

* Together with other concerns about locks

Locks: A Necessary Evil?

ldea: Don’t lock if we don’t need to!

* Use “lockless” synchronization
- Design data structures so that locks are not required

Non-Blocking

Synchronization

Non-Blocking Synchronization
(NBS) Basics

Think of NBS as a “lockless” synchronization scheme

With locking, threads access shared object under mutual exclusion
With NBS, threads can access shared object concurrently

Idea: make change optimistically, i1f conflict detected, roll back

// atomically increment *counter using CAS
atomic_inc(int *counter) {
int value;
do {
value = *counter; // save value of counter
} while (!CAS(counter, value, value+l);

}

Complex updates (e.g. modifying multiple values in a
structure) are hidden behind a single commit point using
atomic instructions

Example: Lock-Based Stack

class Node {
Node *next;
int data;

s

Node *head; Lock *1;

void push(Node *node) {
lock(1);
hode->next = head;

head = node;
unlock(1l);

}

Node *pop() {
int current = NULL;

lock(1);

if (head) {
current = head;
head = head->next;

}
unlock(l);

return current;

Example: Lock-Free Stack

class Node {
Node *next;
int data;

s

Node *head;

void push(Node *node) {
do {
nhode->next = head;
} while (!CAS(&head, node->next, node));

}

Anything
wrong?

Node *pop() {
Node *current = head;

while (current) {
if (CAS(&head, current, current->next)) {
return current;

}

current = head; // head may have changed

}
return NULL;

ABA Problem

* Notice that pop reads head twice .

e If the value of head hasn’t

changed, then head 1s updated
|

 What if another thread updates head in be:itween,-- -
does other work, and then changes head back
to the old value? :

Node *pop() {
Node *current J headf .
while (current) {
if (CAS(&head, current, current->next)) {
return current;

¥

ABA Problem

* Say Ti, Tj are both doing pops and pushes on this stack:

e Ti: starts pop ()
head is A
current 1is A
current->next is B (loaded in reg)

T1 interrupted before it performs:
CAS (&head, current, current->next),
1.e., before head is assigned to B

head

Node *current = head;*-_#’##,,'Timin&mnqned

if (CAS(&head, current, current->next))

ABA Problem

* Say Ti, Tj are both doing pops and pushes on this stack:

head

ABA Problem

* Say Ti, Tj are both doing pops and pushes on this stack:

e Tj:
* a=pop()

head

ABA Problem

* Say Ti, Tj are both doing pops and pushes on this stack:

« Tj:
* a=pop()
* b=pop()

head

ABA Problem

* Say Ti, Tj are both doing pops and pushes on this stack:

« Tj:
* a=pop()
* b=pop()
> push(N)

head

ABA Problem

* Say Ti, Tj are both doing pops and pushes on this stack:

e Tj:
* a=pop()
* b=pop()
> push(N)
* push(a)

e ‘a’ is the same node
that was returned
by first pop()

head

ABA Problem

* Say Ti, Tj are both doing pops and pushes on this stack:

e Tj:
* a=pop()
* b=pop()
> push(N)
* push(a)

* Tiresumes: head is A
* currentis A, current->nextisB
* CAS succeeds, sets head to B!
- Returns A, A->next set to NULL
» Stack should have been N, C

head

One Solution

* Include a version number with every pointer
* pointer_t = <pointer, version>
- Increment version number every time pointed-to data 1s modified

- Atomically update pointer and version using double-word CAS
* Consider pop code: CAS(&head, current, current->next)
* Say current = <A, 1>; After head is updated, head = <A, 2>
* Version number ensures CAS will fail if data has changed

 Jssues

* Not every architecture provides double-word CAS operation
» Old versions of pointers need to be freed

» Use garbage collection to reclaim memory later

« May restrict reuse of memory

Using NBS

* Generally used for simple, update-heavy data structures
* E.g., linked list
* See https://en.wikipedia.org/wiki/Non-blocking linked list
» Hard to design data structures that use NBS

https://en.wikipedia.org/wiki/Non-blocking_linked_list

When do we need NBS Guarantees?

 When we need linearizability

- Everyone agrees on all intermediate states
« All updates appear instantaneous, occur in total order
* Reads return value of last completed write

Imposes dependency between operations
* Limits parallelism

* Do we always need linearizability?

* Consider “top” program that lists all existing processes

Read-Copy Update (RCU)

Read-Copy Update (RCU)

 What 1s RCU?
* Paul McKenney’s PhD thesis
* A key part of the Linux scalability effort

* Reader-writer synchronization mechanism
Supports concurrency between multiple readers + single updater
Readers use no locks
* Hence best for read-mostly data structures
Writers create new versions atomically
 Either using atomic instructions or by locking out other writers

Readers may continue to access old versions
* Old versions must be deleted at some point

Why RCU?

* Consider concurrent hash table example
- Hash function selects bucket (entry in an array)
* Collisions handled by chaining (linked list per bucket)
+ Use per-bucket locks to increase concurrency

ﬁ

ﬁ

* But recall costs of synchronization operations...

What about NBS?

* Non-blocking synchronization is possible for hash table
operations

But still expensive, even for read-only operations

* Consider concurrent lookup and remove operations:

T1 obtains pointer to Node N.
Need to ensure N continues to

exist until T'1 is done using it.

g N g O o B

T2 must detect that Node N i1s in
@ use and defer deletion.

Reference Counting Solution

e T1 can increment reference count on N

Requires atomic update for each node along path to N on a read!

T2 must defer deletion of a node with elevated reference count

TI1:
@ atomic_inc(N->refcount) J

nl

./A(Whlle(N >refcount > 1) {}; }

Reader/Writer locks?

* Concurrent reads, exclusive writes

CPU 0 Reader Reader Blocked Reader

CPU 1 Reader Reader Blocked Reader

CPU 2 Reader Reader Blocked Reader

CPU 3 Reader Reader Writer Reader

* Lots of “dead time” as all readers wait for single writer to
finish

RCU Design Principle

 Avoid mutual exclusion!

CPU 0 Reader Reader Reader

CPU 1 Reader Reader Reader

CPU 2 Reader Reader Reader

CPU 3 Reader Reader Writer Reader

e No more “dead time”

* But how can this be implemented?

RCU Basics

Three key 1deas
» Use publish/subscribe ordering mechanism
* Orders operations so readers see consistent, atomic updates

* Maintain multiple versions of recently updated objects

* Ensures readers that are concurrent with writers will read consistent
(but perhaps stale) data versions

» Wait for previous readers to complete
» For deleting old versions

All three together ensure that reads can be performed correctly
without using locks

See LWN article: http://lwn.net/ Articles/262464

Understanding the Need for
Publish/Subscribe

/* definitions */ T1 (Writer):
struct foo { p = malloc(sizeof(*p));
int a; p->a = 1;
}s gp = p; // gp can be read by others

/* gp == global ptr */
struct foo *gp = NULL; T2 (Reader):
retry:
p = gp; // get ptr to shared data
if (p == NULL)

goto retry;
use(p->a);

No locks are being used by reader

When is it safe to dereference the gp pointer, i.e., 1s use(p->a)
guaranteed to return 17

Memory Order “Writer Mischief”

Compiler, CPU can reorder memory assignments and reads

Tl (Writer): Problem 1 |11 (Writer) :

p = malloc(sizeof(*p)); :> p = kmalloc(sizeof (*p)) ;
p->a = 1; gp = P/

gp = p; p->a = 1;

T2 (Reader):
retry:
p = gp; // get ptr to shared data
if (p == NULL)
goto retry;
use(p-»>a); // may read unitialized value!

Memory Order “Reader Mischief”

Compiler, CPU can reorder memory assignments and reads

T1 (Writer):
p = malloc(sizeof(*p));
p->a = 1;
gp = p; // gp can be read by others

T2 (Reader): Problem 2 | T2 (Reader) :
retry: retry:

p = gp; P = guess(gp);
if (p == NULL) use (p->a); // old value
goto retry; if (p '= gp) // fails!

use(p->a); goto retry;

RCU Publish/Subscribe
Ordering Mechanism

/* definitions */ T1 (Writer):
struct foo { p = malloc(sizeof(*p));
int a; p->a = 1;
}s €p—=p3— rcu_assign_pointer(gp,p);

/* gp == global ptr */
struct foo *gp = NULL;

T2 (Reader):
retry
P——Ep5— p = rcu_dereference(gp);
if (p == NULL)
goto retry;
use(p->a);

* Enforce ordering with rcu_assign_pointer/rcu_dereference

They encapsulate memory barriers, ensuring the correct ordering

Maintaining Multiple Versions

» Two examples using linked list
» Update
* Deletion

RCU List Element Update

« T1 traversing linked list, T2 updates an element:

e S o B o S o N

T2: update N

RCU List Element Update

« T1 traversing linked list, T2 updates an element:

@ RC: T2 Reads and makes a Copy of N

H]%N?f O

T2: update N

RCU List Element Update

« T1 traversing linked list, T2 updates an element:

RC: T2 Reads and makes a Copy of N
U: T2 Updates prev to N’ atomically

\

H [Nﬁj O

N’

Why make a copy of N?

When is it ok to delete N (and reuse
the memory for something else)?

46

RCU List Element Deletion

* T1 traversing linked list, T2 removes an element:

e S o B o S o N

RCU List Element Deletion

o After removal — T1 continues to use N and later nodes in the

list
@ T2 updates prev to next atomically

O

When 1s 1t ok to delete N (and reuse

the memory for something else)? .

Waiting for Previous Readers

RCU needs to wait for previous readers to reclaim old versions

RCU uses quiescent-state based reclamation (QSBR) to handle
these read-reclaim races

Definition: A quiescent state for a thread T 1s a state 1n which
T holds no references to any shared data

Definition: A grace period 1s an interval in which every thread
has passed through at least one quiescent state

QSBR 1dea: elements removed from a data structure can be
reclaimed after a grace period, since no thread can still be
holding a reference to the old element at that point

I1lustration

Element removed Element can be
at this point reclaimed after this point

' '

- Grace Period >

Thread 1 QS
Thread 2
Thread 3

How to define Quiescent States?

Application dependent!

For OS kernels, some natural ones exist

» Assume that references to RCU data structures are only held
within read or write critical sections

» Read critical section: thread reads an RCU-protected data structure
* Write critical section: thread writes an RCU-protected data structure
» Assume that read critical sections do not block

* 1.e., No context switch occurs within a read-side critical section

* Then, a context switch is a quiescent state
* No references are held across a context switch

Reader-Side Quiescence Primitives:
Read Lock/Unlock

/* definitions */
struct foo {
int a;

}s

/* gp == global ptr */
struct foo *gp = NULL;

Tl (Writer):
p = malloc(sizeof(*p));
p->a = 1;
rcu_assign_pointer(gp, p);
// when can we free(p)?

lock/unlock do
not spin or block!

T2 (Reader):
rcu_read _lock(); // notice, no lock var
p = rcu_dereference(gp);
if (p !'= NULL)
use(p->a);
rcu_read_unlock();

rcu_read_lock/unlock disable context switch within read-side
critical section

Write can detect that read 1s in progress (reader 1s not quiescent)
and does not delete data that is being accessed by reader

Writer-Side Quiescence Primitive:
Synchronize RCU

 synchronize rcu()
Wait until all pre-existing RCU read-side critical sections complete

* Implementation:

synchronize rcu() {
for_each_online_cpu(cpu)
run_on(cpu); // runs the current thread on cpu

}

 synchronize rcu() runs the current thread on all CPUs

Forces context switches on each of the CPUs

Ensures that 1t waits for the grace period

RCU Synchronization

rcu_dereference()

ESEDES

rcu_assign pointer()

Quiescent
rcu_read_lock(), State synchronize rcu()

rcu_read_unlock()

Linux RCU List Update Code

// Reader traverses
// a linked list

rcu_read_lock();

// next line uses

// rcu_dereference

hlist for_each_entry rcu(p,
g, head, list) {
// p 1is a linked
// list node
do_something(p->value);

¥

rcu_read_unlock();

// Writer searches and updates
// a list element

p = search(head, key);
if (p == NULL) {
/* unlock and return. */
}
g = kmalloc(sizeof(*p), GFP_KERNEL);
*q = *p; // read and copy
g->value = ...;
// atomically replace p with g
// next line uses rcu_assign pointer
list replace rcu(&p->list, &g->list);
// wait for grace period
synchronize rcu();

// free previous version
kfree(p);

PPC Hash Table with RCU

|
"Ideal"
!!RCU"
"HPBR"
"spinbkt"
"briock"
"globalrw"

©
o
=
2
@
N
©
=
S
S
Z
@
E
—
=
c
|
| —
@
Q
w
o
<
o
-
@
o
0p)

Growth of RCU Use 1in Linux

]

o

%]
=
=)
-9
-
=]
(=]
o
#*

Year

Graph from http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

(Nov 26, 2021, generated daily)

57

http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

...but Still Small 1n Comparison

168888
148688
128688 -
]
7]
188688 -

5 ©eees -

=
-
L
=4
-l
-
=]
—]
)
-
[}
o
#H

Ga888 -

48888 -

28888 -

Year

Graph from http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

(Nov. 26, 2021, generated daily)

58

http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

When to Use Which Tool?

Read-mostly situations

- If algorithm can handle concurrent reads + single updater: RCU

Update-heavy situations
» Simple data structures and algorithms: NBS
* Complex data structures and algorithms: Locking

When you only have a hammaer, everything looks like a nail

It's good to have lots of tools in your toolbox!

Some Resources

LWN article on lockless algorithms
https://lwn.net/Kernel/Index/#I.ockless algorithms

Load dependent ordering behavior in Alpha:
http.//www.cs.umd.edu/~pugh/java/memoryModel/Alpha
Reordering. html

An excellent book on multi-processor synchronization and
lockless algorithms: The art of multiprocessor programming
by Maurice Herlihy & Nir Shavit

https://lwn.net/Kernel/Index/
http://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
http://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html

	Slide 1: ECE 454 Computer Systems Programming Avoiding Locks
	Slide 2: Overview
	Slide 3: Challenges with Locking
	Slide 4: Locking: A Necessary Evil?
	Slide 5: 1. Deadlock
	Slide 6: 1. Deadlock
	Slide 7: 2. Priority Inversion
	Slide 8: 3. Not Fault Tolerant
	Slide 9: 4. Convoying
	Slide 10: 5. Expensive, Even When Uncontended!
	Slide 11: Critical Section Efficiency
	Slide 12: Causes: Deeper Memory Hierarchy
	Slide 13: Causes: Deeper Pipelines
	Slide 14: Performance
	Slide 15: Locks: A Necessary Evil?
	Slide 16: Non-Blocking Synchronization
	Slide 17: Non-Blocking Synchronization (NBS) Basics
	Slide 18: Example: Lock-Based Stack
	Slide 19: Example: Lock-Free Stack
	Slide 20: ABA Problem
	Slide 21: ABA Problem
	Slide 22: ABA Problem
	Slide 23: ABA Problem
	Slide 24: ABA Problem
	Slide 25: ABA Problem
	Slide 26: ABA Problem
	Slide 27: ABA Problem
	Slide 28: One Solution
	Slide 29: Using NBS
	Slide 30: When do we need NBS Guarantees?
	Slide 31: Read-Copy Update (RCU)
	Slide 32: Read-Copy Update (RCU)
	Slide 33: Why RCU?
	Slide 34: What about NBS?
	Slide 35: Reference Counting Solution
	Slide 36: Reader/Writer locks?
	Slide 37: RCU Design Principle
	Slide 38: RCU Basics
	Slide 39: Understanding the Need for Publish/Subscribe
	Slide 40: Memory Order “Writer Mischief”
	Slide 41: Memory Order “Reader Mischief”
	Slide 42: RCU Publish/Subscribe Ordering Mechanism
	Slide 43: Maintaining Multiple Versions
	Slide 44: RCU List Element Update
	Slide 45: RCU List Element Update
	Slide 46: RCU List Element Update
	Slide 47: RCU List Element Deletion
	Slide 48: RCU List Element Deletion
	Slide 49: Waiting for Previous Readers
	Slide 50: Illustration
	Slide 51: How to define Quiescent States?
	Slide 52: Reader-Side Quiescence Primitives: Read Lock/Unlock
	Slide 53: Writer-Side Quiescence Primitive: Synchronize RCU
	Slide 54: RCU Synchronization
	Slide 55: Linux RCU List Update Code
	Slide 56: PPC Hash Table with RCU
	Slide 57: Growth of RCU Use in Linux
	Slide 58: …but Still Small in Comparison
	Slide 59: When to Use Which Tool?
	Slide 60: Some Resources

