ECE 454

Computer Systems
Programming

Data Analytics with Map Reduce

Jon Eyolfson
Courtesy: Ashvin Goel
ECE Dept, University of Toronto

The Course Until Now

Sequential program optimization: Parallel programming on single machine:
A

CPU architecture Threads

Exec. Compiler optimization Synchronization
Time Cache optimization Parallel architectures
Dynamic memory Better locks

Avoiding locks

5 I I A
: 0000

C
I I I I I
Ram Ram

Next Step

Internet-Scale Data

1.19 billion active users.

Millions of Terabytes of data.

Google indexed roughly 200
Terabytes, or .004% of the entire
internet

-- Eric Schmidt, former Google CEO

Google

3.5 billion pieces of content shared
per day.

10.5 billion minutes spent on
Facebook worldwide every day.

facebook

Challenges
° IndeX and analyze data?]‘ Blg Data Analytics: this lecture
e Store data?

. How Facebook works: later...
* Serve data with low latency?}

Big Data Analytics

How can we perform (simple) computations on Internet-scale
data?

* Grep, sort, word-count

 Index pages, find who references a web pages
* Log analysis

How do you Build Google?

Google

Canada

How Google Works

Query

Gnndu\'ﬂlbﬂ-r"N
1. The web server sends the query to the index
servers. The content inside the index servers is
similar to the index in the back of a book--it tells

which pages contain the words that match any
particular query term.

3. The search
results are returned
to the user in a
fraction of a second.

2. The query travels to the doc

servers, which actually retrieve the

stored documents. Snippets are

generated to describe each search ,m,_

result. Rest of the lecture

focuses on the
index servers

Two Indexing Challenges

 Which webpages contain the given keyword (e.g., “NBA”)?
* Problem is called web page indexing
* Need to crawl and analyze all web pages
* Output: <word, list(URLs)>

 Example: <“NBA”, (www.nba.com, www.espn.com, ...)>

* Which webpages for the given keyword are important?
» Problem 1s called web page ranking @ e e ee
* Need to first find pages that link to a page el

© _ www.nba.com
* QOutput: <target, list(source)>

« Example: <www.nba.com, (Www.espn.com, www.cnn.com, ...)>
* Need to rank pages based on output (PageRank)

Web Page Indexing

// input: list of all web pages
// output: for each word, web pages that contain the word

index(List webpages) {
Hash output = new Hash<string word, List<string url>>;

for each page p in webpages {
for each word w in p {
if (loutput.exists(w))
output{w} = new List<string>;
// append web page for this word
output{w}.push(URL(p));

What if we have billions of web pages?

Parallel Web Page Indexing

* Need to parallelize indexing on multiple machines

List of web pages

Assign web pages
to different nodes

Parse espn.com and nba.com output:
<“nba”, (espn.com, nba.com)>
<“nfl”, (espn.com)>

Parse cnn.com, yahoo.com ny.com output:
<“nba”, (yahoo.com, cnn.com)>
<“trump”, (ny.com)>

\/

Merge results:

<“nfl”, (espn.com)>
<“trump”, (ny.com)>

<“nba”, (espn.com, nba.com, yahoo.com, cnn.com)>

Parallel Web Page Indexing

 What if we also want to parallelize the merge process?

List of web pages

Assign web pages
to different nodes

Parse espn.com and nba.com output: Parse cnn.com, yahoo.com ny.com output:
<“nba”, (espn.com, nba.com)> <“trump”, (ny.com)>
<“nfl”, (espn.com)> <“nba”, (yahoo.com, cnn.com)>

Assign keywords
to different nodes

M«

Merge “nba”, “trump” results:

Jo ; p

<“mba”, (espn.com, nba.com, yahoo.com, cnn.com)>
<“trump”, (ny.com)>

Merge “nfl” results:
<“nfl”, (espn.com)>

// index a subset of web pages
index(List webpages) {
Hash output = new Hash<string word,
List<string url>>;

foreach page p in webpages {
for each word w in p {
if (loutput.exists (w))
output{w} = new List<string>;
// append web page for word w
output{w}.push(URL(p));
}
}

// partition data
// send output to merge servers
foreach word w in keys(output) {
if (w in range [‘a’ - ‘d’])
send(merge_serverA, output{w});
else if (w in range [‘e’ - ‘h’]
send(merge_serverB, output{w});

merge() {
// while any index server has data

while (index _serverN sends data) {
// receive data
recv(index_serverN, output{w});
// merge results in final output
final output{w}.push(output{w});

/
k Problem

final output stores results for all
words, hat if it 1s so large that
merge() runs out of memory?

// index a subset of web pages
index(List webpages) {
Hash output = new Hash<string word,
List<string url>>;

foreach page p in webpages {
for each word w in p {
if (loutput.exists (w))
output{w} = new List<string>;
// append web page for word w
output{w}.push(URL(p));
}
}

// partition data
// send output to merge servers
foreach word w in keys(output) {
if (w in range [‘a’ - ‘d’])
send(merge_serverA, output{w});
else if (w in range [‘e’ - ‘h’]
send(merge_serverB, output{w});

merge() {
// while any index server has data

while (index_serverN sends data) {
// receive and buffer data
// in output, possibly on disk
output += recv(index_serverN,

output{w});

}

// group output by word,

// may require disk-based sort

group by word(output);

foreach w in keys(output) {

// merge results in final output
final output{w}.push(output{w});

if (w != prev_w) {
// done with prev_w
// write prev_w output to disk
write(final_output{prev_w});

Are we done?

Not So Fast!

* Need to handle failures
* What if indexer is slow or fails?
* Need to restart the indexer, mergers need to wait
* What 1f merger fails?
* Need to restart merger, need to wait for all mergers to finish
* Need to ensure idempotent operation under all failures

* Operation can be run multiple times, without additional side-effects

* What if partitioning 1s skewed?
- E.g., frequency of words by initial letters 1s not the same
« S (12%), C(9%), P, Y, Z (0.38%), X (0.09%)
+ Leads to load imbalance at merger

» Need to repartition output of indexer for better performance

/
index(List webpages) {
Hash output = new Hash<string word,
List<string url>>;

~N

({;oreach page p in webpages {
for each word w in p {
if (loutput.exists (w))
output{w} = new List<string>;
// append web page for word w
output{w}.push(URL(p));

\J J

foreach word w in keys output {

merge() {

while (index _serverN sends data)

output += recv(index_serverN,
output{w});

group by word(output);

foreach w in keys(output) {

final output{w}.push(output{w});

|

// merge results in final output

J

What if programmers only had to write code inside the boxes?

Solution: MapReduce

* Programming model for big data analytics

* Programmer writes two functions, called map and reduce

map(in_key, in_value)->list(out _key, intermediate val)
Processes input key/value pair, produces set of intermediate pairs

reduce(out _key, list(intermediate val))->list(out _key, outvalue)
Processes a set of intermediate key-values, produces value for each key

* Widely used model

» At Google, used for indexing and many analytic jobs
* Hadoop (open source version)

* Used by > 50% of the Fortune 50 companies

* Facebook analyzes half a PB per day using hadoop

=
Map Task | J Map Task 2 J Map Task 3

© 9110 O

kl:vkl:vk2:wv kl:v k3:v kd:v kd:v kS:v kd:v kl:v k3:v

Partitioning Function Partitioning Function Partitioning Function

Sort and Group Sort and Group
k2:v kd:v,vv kS:v kl:vvvy | k3iv,v

I
I
Programmer writes M and R |
I
I
I
I

MapReduce framework takes care of
the rest of the details!

Reduce Task | Reduce Task 2_l

Web Page Indexing With
MapReduce

// input: <url, web page content>
map(url, content) {
for each word w in content {
// output: <word, url>
Emit(<w, url>);
}
}

// input: <word, list of url>
reduce(char *word, List<url> 1) {
if (!final output.exists(word))
final output{word} = new List<url>;

// output: <word, list(url)>
foreach url in 1 {

final output{word}.push(url);
}

MapReduce Framework:

Mapper:

* Partitions intermediate output

* Sends same keys to same
reducer

Reducer:
* Receives data
* Sorts and groups data by key

Master:
* Performs error handling

Mapper 1

Input:

<“espn.com” esppage>
<“nba.com”, nbapage>
Output:

<“nba”, espn.com>
<“nba”, nba.com>
<“nfl”, espn.com>

Mapper 2

Reducer 1

Input:

<“yahoo.com”, yahoopage>
<“ny.com”, nypage>
<“cnn.com”, cnnpage>
Output:

<“nba”, yahoo.com>
<“trump”, ny.com>
<“nba”, cnn.com)>

Reducer 2

Input:

(44 b2
<“nba”, espn.com>
<“nba”, nba.com>
<“nba”, yahoo.com>
<“trump”, ny.com>
<“nba”, cnn.com)>
Output:

<“mba”, (espn.com, nba.com, yahoo.com, cnn.com)>

<“trump”, (ny.com)>

Input:

<“nfl”, (espn.com)>
Output:

<“nfl”, (espn.com)>

Reverse Web Links With
MapReduce

// input: <url, web page content>

map(url, content) { _ ___—— T~
for each target_url in content { Just need to replace word

// output: <target url, url> with target_url
Emit(<target url, url>);

}
}

// input: <target url, list of url>
reduce(target url, List<url>l) {
if (!final output.exists(target url))
final output{target url} = new List<url>;

// output: <target url, list(url)>
foreach url in 1 {

final output{target url}.push(url);
}

Locality optimization:
map/reduce tries to run
worker on machine
storing the file split

a
"
.
"
- "
I e 0"

(1) fork . .

(1) fairk 1) fork

-. (2)

2. assign
] _&q'sign_ l'Edll.bC.)

map

worker
(5) remote read

Map
phase

) read (4) local write
worker

Intermediate files
(on local disks)
Figure 1: Execution overview

Handling Failures

Machine failures are common in large distributed systems

* “One node crashes per day in a 10K node cluster” - Jeff Dean

Worker failure

» Master detects worker failure via periodic heartbeats

* Re-execute map/reduce tasks whose results are not available

Master failure

» Single point of failure

* Master writes periodic checkpoints

* Another master started from the last checkpointed state

Google: Lost 1600 of 1800 machines once, but finished fine! 2

2

Refinement: Redundant Execution

Slow workers significantly lengthen completion time
* Called “Stragglers”

Maybe caused by

 Other jobs consuming resources on machine
» Bad disks with soft errors transfer data very slowly
* Software bugs

Solution

* Near end of phase, spawn backup copies of tasks
* Whichever one finishes first “wins”

» Doesn’t cause overhead if stragglers don’t exist

Refinement: Saving Network
Bandwidth with Local Reduce

Mapper 1

Input:

<“espn.com” esppage>
<“nba.com”, nbapage>
Output:

<“nba”, (espn.com, nba.com)>
<“nfl”, espn.com>

Mapper 2

Input:

<“yahoo.com”, yahoopage>
<“ny.com”, nypage>
<“cnn.com”, cnnpage>
Output:

<“nba”, (yahoo.com, cnn.com)>

2 nfl <“trump”, ny.com>
Q
Ly
Reducer 1 gy nba, trum Reducer 2

Input:

<“mba”, (espn.com, nba.com)>
<“trump”, ny.com>

<“nba”, (yahoo.com, cnn.com)>
Output:

<“trump”, (ny.com)>

<“mba”, (espn.com, nba.com, yahoo.com, cnn.com)>

Input:

<“nfl”, (espn.com)>
Output:

<“nfl”, (espn.com)>

Various Advancements

Master can become bottleneck

* Split functionality of master
* Scheduling, monitoring, recovery, etc.

* Only scheduler is centralized

I/0 on intermediate results 1s slow
* Buffer intermediate result in memory

Other programming models
* E.g., SQL on distributed systems (HIVE)

More details: “MapReduce: Simplified Data Processing on
Large Clusters”. Jeff Dean and Sanjay Ghemawat, OSDI’04

25

	Slide 1: ECE 454 Computer Systems Programming Data Analytics with Map Reduce
	Slide 2: The Course Until Now
	Slide 3: Next Step
	Slide 4: Internet-Scale Data
	Slide 5: Big Data Analytics
	Slide 6: How do you Build Google?
	Slide 7: How Google Works
	Slide 8: Two Indexing Challenges
	Slide 9: Web Page Indexing
	Slide 10: Parallel Web Page Indexing
	Slide 11: Parallel Web Page Indexing
	Slide 12
	Slide 13
	Slide 14: Not So Fast!
	Slide 15
	Slide 16: Solution: MapReduce
	Slide 17
	Slide 18: Web Page Indexing With MapReduce
	Slide 19
	Slide 20: Reverse Web Links With MapReduce
	Slide 21
	Slide 22: Handling Failures
	Slide 23: Refinement: Redundant Execution
	Slide 24: Refinement: Saving Network Bandwidth with Local Reduce
	Slide 25: Various Advancements

