
Jon Eyolfson

Courtesy: Ashvin Goel

ECE Dept, University of Toronto

ECE 454

Computer Systems

Programming

Final Review

Final Mechanics

• Final exam will cover all the material from the course

• CPU architectures, compiler optimizations, performance

optimization

• Cache performance, dynamic memory and modern allocators

• Threads and synchronization, parallel architectures and

performance, better locking methods, avoiding locking

• Map reduce

• Based upon lecture material and labs

2

What we have learnt

3

Sequential program optimization:

Exec.

Time

• CPU architecture

• Profiling

• Compiler optimization

• Memory hierarchy

• Cache optimization

• Dynamic memory



C

P

C

P

C

P

RamC

P

Ram

• Threads

• Synchronization

• Parallel architecture

 and performance

• Better locking

• Avoiding locking

Parallel programming on single machine:

CPU Architectures

• Key techniques that make CPU fast

• Pipelining

• Branch prediction

• Out-of-order execution

• Instruction-level parallelism

• Simultaneous multithreading

4

CPU architecture: Intel

5

Year CPI

1971

Processor Tech.

4004 no pipeline n

1985 386 pipeline close to 1
branch prediction closer to 1

1993 Pentium Superscalar < 1

1995 PentiumPro Out-of-Order exe. << 1

2000 Pentium IV SMT <<<1

Profiling

• Tools for profiling

• gprof

• gcov

• unix time

• perf

• Rationale behind profiling?

• Amdahl’s law

• speedup = OldTime / NewTime

• Implications of Amdahl’s law?

6

Compiler optimizations

• Machine independent (apply equally well to most CPUs)

• Constant propagation

• Constant folding

• Common subexpression elimination

• Copy propagation

• Dead code elimination

• Loop invariant code motion

• Function inlining

• Machine dependent (apply differently to different CPUs)

• Instruction Scheduling

• Loop unrolling

7

GCC -O1
(only inline very small func.)

GCC –O2
GCC –O3

Might need to do manually.

Role of the Programmer

How should I write my programs, given that I have a good, optimizing compiler?

• Don’t: Smash Code into Oblivion
• Hard to read, maintain, & assure correctness

• Do:
• Select best algorithm
• Write code that’s readable & maintainable
• Procedures, recursion

• Even though these factors can slow down code

• Eliminate optimization blockers
• Allows compiler to do its job

• Focus on Inner Loops
• Do detailed optimizations where code will be executed repeatedly
• Will get most performance gain here

8

Cache performance

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks
on remote network
servers

Main memory holds
disk blocks retrieved
from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines
retrieved from L2 cache

CPU registers hold words
retrieved from
 L1 cache

L2 cache holds cache lines
retrieved from main
memory

Smaller,
faster,
costlier
per byte

9

Why Caches Work

• Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
• Items with nearby addresses tend

to be referenced close together in time

block

block

10

Optimize your program for cache performance

• Write code that has locality

• Spatial: access data contiguously

• Temporal: make sure access to the same data is not too far

apart in time

• How to achieve locality?

• Proper choice of algorithm

• Loop transformations

• Tiling

11

Dynamic memory management

• How do we know how much memory to free just given a pointer?

• How do we keep track of the free blocks?

• Implicit list

• Explicit list

• Segregated free list

• How do we pick a block to use for allocation -- many might fit?

• How do we reinsert a freed block?

• How do phkmalloc and jemalloc work?

12

4 6 6 4 4

P1

4

P2

Multithreading

• What is multithreading?

• How do we share data across different threads?

• Communication and synchronization

• Data race

• Deadlock

• How to use pthread libraries to program

• Coarse-grain lock vs. fine-grain lock

13

Example: Parallelize this code

for(i=1; i<100; i++) {

 a[i] = …;

 …;

 … = a[i-1];

}

• Problem: each iteration
depends on the previous

• Solution: appropriate
synchronization a[3] = …;

… = a[2];

…

a[4] = …;

… = a[3];

…

a[5] = …;

… = a[4];

…

a[3] = …;

… = a[2];

…

a[4] = …;

… = a[3];

…

a[5] = …;

… = a[4];

…

14

Parallel architectures

15

Memory

C

P

C

P

C

Dual-core

C

P

C

P

C

Dual-core

SMP

(Symmetric multiprocessing)

(m
o

th
e
rb

o
a
rd

)

…

• Cores have their private

caches

• Cache lines may be

duplicated

• Need protocol to ensure

consistency

Cache coherence

• MESI

• Modified

• Exclusive

• Shared

• Invalid

• Why is “Exclusive” needed?

• What is false sharing?

• Why it is bad?

16

Image src.: http://en.wikipedia.org/wiki/MESI_protocol

Performance implications of parallel

architecture

17

• Cache coherence is expensive (more than you thought)

• Avoid unnecessary sharing (e.g., false sharing)

• Atomic operations are expensive

• Avoid unnecessary coherence (e.g., better locks)

• Crossing sockets is a killer

• Can be slower than running the same program on single core!

• pthread provides CPU affinity mask

• pin cooperative threads on cores within the same die

Memory Consistency

• Difference between memory coherence and consistency

• What is sequential consistency?

• Why is it expensive to implement sequential consistency

• Processor optimizations that lead to violating sequential

consistency

• Using memory barriers for correct memory ordering

18

Better Locks

• How are locks implemented?

• Why is locking expensive?

• Why focus on spinlocks?

• Why are TTAS locks better than TAS spinlocks?

• Why are ticket locks better than TTAS locks?

• Why are queuing locks better than ticket locks?

• How are these locks implemented and what impact do they

have on cache coherence?

19

Avoiding Locks

• What are the challenges with locking?

• What is non-blocking synchronization and how is it

implemented?

• What is the ABA problem?

• What is RCU and how is it implemented? What are its various

components and how do they interact with each other?

20

What we have learnt

21

Sequential program optimization:

Exec.

Time

• CPU architecture

• Profiling

• Compiler optimization

• Memory hierarchy

• Cache optimization

• Dynamic memory



C

P

C

P

C

P

RamC

P

Ram

• Threads

• Synchronization

• Parallel architecture

 and performance

• Better locking

• Avoiding locking

Parallel programming on single machine:

memory

server

memory

server

memory

server

memory

server

Parallel programming on distributed system:
• MapReduce

• Distributed database

• Distributed memcache

MapReduce

• Why do we need MapReduce?

• What is MapReduce?

• Programming model for big data analytics

• Programmer writes two functions

map (in_key, in_value) -> list(out_key, intermediate_value)

• Processes input key/value pair

• Produces set of intermediate pairs

reduce (out_key, list(intermediate_value)) -> list(out_key, outvalue)

• Processes a set of intermediate key-values

22

Technology is always changing

23

Sequential program optimization:

Exec.

Time



C

P

C

P

C

P

RamC

P

Ram

Parallel programming on single machine:

memory

server

memory

server

memory

server

memory

server

Parallel programming on distributed system:

Moore’s law on single core
reaches the end -> multicores.

Internet!

Is what we have learnt still going to be useful

in 20 years?

• Why ask me now? Ask me in 2044…

• Technology is going to change …

• Some techniques might not be relevant

• Performance might not be very important at all

• Correctness, easy-to-program, scalability, energy consumption…

• However, key ideas will still hold!

• “There is nothing new under the sun”

• Amdahl’s law: optimize for the bottleneck

• Cache: CPU cache -> memory cache (-> memcached -> CDN)

• Parallelization

• Avoid unnecessary computation (e.g., unnecessary sharing, sync., etc.)

24

More important: critical thinking

• “Why” is far more important than “how”

• For each technique we have learnt, we discussed the “why”

• E.g., why cache coherence impacts performance? why multi-core?

• “How” is just a natural consequence of understanding “why”

• The capability of asking the right “why” question and finding

out the answer will keep you at the cutting edge of technology

trends

• Skepticism + curiosity

• Do we really need this technology?

25

The End

• Congratulations on surviving ECE 454!

• It’s a challenging course, but I hope you found it worthwhile

• Good luck, and thanks for a great class!

• I really enjoyed it, and I hope the feeling is mutual

26

And if you haven’t done so, please

submit your course evaluation, thanks!

	Slide 1: ECE 454 Computer Systems Programming Final Review
	Slide 2: Final Mechanics
	Slide 3: What we have learnt
	Slide 4: CPU Architectures
	Slide 5: CPU architecture: Intel
	Slide 6: Profiling
	Slide 7: Compiler optimizations
	Slide 8: Role of the Programmer
	Slide 9: Cache performance
	Slide 10: Why Caches Work
	Slide 11: Optimize your program for cache performance
	Slide 12: Dynamic memory management
	Slide 13: Multithreading
	Slide 14: Example: Parallelize this code
	Slide 15: Parallel architectures
	Slide 16: Cache coherence
	Slide 17: Performance implications of parallel architecture
	Slide 18: Memory Consistency
	Slide 19: Better Locks
	Slide 20: Avoiding Locks
	Slide 21: What we have learnt
	Slide 22: MapReduce
	Slide 23: Technology is always changing
	Slide 24: Is what we have learnt still going to be useful in 20 years?
	Slide 25: More important: critical thinking
	Slide 26: The End

