
Introduction

to Profiling

2024 Fall ECE454: Computer Systems Programming

Jon Eyolfson

Lecture 2

1.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


WeCould Time the FunctionsWe’re Interested In

We did it in the last lecture using the CLOCK_PROCESS_CPUTIME_ID clock

It measures actual CPU time consumed by the process

However this too much manual effort, and we may not know where to focus

1



WeNeed toMeasureOur Programswith Profilers

We have to profile to see what is taking up execution time in a program

Profilers have two kinds of output: flat, and call-graph

They collect data from: statistical sampling, or instrumentation

2



TheDifference Between Profiler Outputs

Flat Profiler

Only computes the average time in a particular function

Does not include anymore information such as: callee’s

Call-graph Profiler

Computes the call times

Frequency of function calls

Call graph, showing what called the function

3



HowSampling Profilers Collect Data

Mostly done by taking samples of the system state at a set rate

At a sample: check the system state

Will have some slowdown, but not much

4



How Instrumenting Profilers Collect Data

Add additional instructions at specified program points

You can do this at compile time or run time (expensive)

Also, either manually or automatically (like conditional breakpoints)

5



The Basic Guidelines for Large Software Projects

Write clear and consise code, not trying to do any premature optimizations

(focus on correctness)

Profile to get a baseline of your performance

Allows you to easily track any performance changes

Allows you to re-design your program before it’s too late

Focus your optimization efforts on the code that matters!

6



SomeSanity ChecksWhen Looking at the Data

Time is spent in the right part of the system

Majority of time should not be spent in any error-handling,

non-critical code or exceptional cases

Time is not unnecessarily spent in the operating system

7



ToolsWe’ll Use in This Course—gcov and gprof

gcov is a coverage tool that instruments your program

It tells you how many times each line executes

(needs debugging information)

This does not give you performance numbers!

gprof is a profiler that uses sampling and instrumentation

and tells you how long each function executes

Reference: GCC Instrumentation Options

8

https://gcc.gnu.org/onlinedocs/gcc-14.2.0/gcc/Instrumentation-Options.html


gcovUsage

Use the compiler flag --coverage when compiling and linking

(adds the -fprofile-arcs and -ftest-coverage flags)

(or use b_coverage=true with meson)

When you run your program every object file generates a .gcda and .gcno

Generate a report using gcovr, or using meson:

meson setup -Db_coverage=true build

meson compile -C build

ninja -C build coverage

9



gprofUsage

Use the -pg flag with gcc when compiling (also linking)

Run your program as you normally would (it now generates a gmon.out file)

Use gprof to interpret the results gprof <executable>

Example commands using meson, assuming the output calc:

meson setup -Dc_args=-pg -Dc_link_args=-pg build

meson compile -C build

build/calc

gprof build/calc

10



Flat Profile Example

When we look at the profiling data, this is the first thing we see:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ns/call ns/call name

34.49 0.75 0.75 300000000 2.51 2.51 int_power

29.43 1.39 0.64 _init

28.51 2.02 0.62 300000000 2.07 2.07 float_power

2.76 2.08 0.06 100000000 0.60 7.32 float_math

2.30 2.13 0.05 100000000 0.50 4.65 float_math_helper

1.84 2.17 0.04 main

0.46 2.18 0.01 100000000 0.10 7.72 int_math

0.46 2.19 0.01 100000000 0.10 5.11 int_math_helper

11



Flat Profile Reference

There is one function per line, the columns are:

time: the percent of the total execution time in this function

self: seconds in this function

cumulative: addition of this function plus any above in table

calls: number of times this function was called

self ns/call: just self nanoseconds / calls

total ns/call: average time of function execution,

including any other calls the function makes

12



Call Graph Example

After the flat profile gives you a feel of the costly functions,

you can get a better story from the call-graph

index % time self children called name

[1] 70.6 0.04 1.50 main [1]

0.01 0.76 100000000/100000000 int_math [2]

0.06 0.67 100000000/100000000 float_math [4]

-----------------------------------------------

0.01 0.76 100000000/100000000 main [1]

[2] 35.3 0.01 0.76 100000000 int_math [2]

0.01 0.50 100000000/100000000 int_math_helper [7]

0.25 0.00 100000000/300000000 int_power [3]

-----------------------------------------------

0.25 0.00 100000000/300000000 int_math [2]

0.50 0.00 200000000/300000000 int_math_helper [7]

[3] 34.4 0.75 0.00 300000000 int_power [3]

-----------------------------------------------

0.01 0.50 100000000/100000000 int_math [2]

[7] 23.4 0.01 0.50 100000000 int_math_helper [7]

0.50 0.00 200000000/300000000 int_power [3]

13



Reading theCall Graph

The line with the index is the current function being looked at (primary line)

Lines above are functions which called this function (callers)

Lines below are functions which were called by this function (callees)

Primary Line

time: total percentage of time spent in this function and it’s children

self: same as flat profile

children: time spent in all calls made by the function

(it should be equal to self + children of all functions below)

14



Reading theCallers in theCall Graph

The callers are the functions above the primary line

self: time spent in primary function, when called from current function

children: time spent in primary function’s children,

when called from current function

called: number of times primary function was called from current function

divided by number of nonrecursive calls to primary function

15



Reading theCallees in theCall Graph

The callees are the functions below the primary line

self: time spent in current function when called from primary function

children: time spent in current function’s children calls

when called from primary function

Note: self + children is an estimate of time spent in current function

when called from primary function

called: number of times current function was called from primary function

divided by number of nonrecursive calls to current function

16


