
Why Rust?

2024 Fall ECE454: Computer Systems Programming

Jon Eyolfson

Lecture 20

1.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

ANext-Gen SystemsProgramming Language

1

Only Compile Correct Programs

This compiler has lots of checks to ensure your program is correct

There are 3 main benefits of using Rust

Ownership: prevents memory issues without a GC

Borrow checker: prevents concurrency issues (data races)

Lifetimes: ensures that references are valid

2

Hello,World! in Rust

fn main() {

println!("Hello, world!");

}

println! is a macro, macros always end with !

Unlike C preprocessor macros that are simple text replacement,

Rust macros work with the compiler

3

Rust is Statically Typed

However, it does type inference by default

You can omit types and let the compiler figure it out

(types are always required for function arguments)

The primitive types are:

Signed integers: i8, i16, i32, i64, i128 and isize (pointer size)

Unsigned integers: u8, u16, u32, u64, u128 and usize (pointer size)

Floating point: f32, f64

char Unicode scalar values like 'a', 'α' and '∞' (4 bytes each)

bool either true or false

The unit type (), whose only possible value is an empty tuple: ()

You can add a suffix to a literal if you want it to be a certain type, e.g. 5u16

4

Variables are Immutable byDefault

You define a variable using a let statement:

fn main() {

let x = 42; /* The default type of integers is i32, you can also write:

let x: i32 = 42; */

println!("x = {}", x);

x = 0;

}

error[E0384]: cannot assign twice to immutable variable `x`

--> src/bin/hello.rs:4:5

|

2 | let x = 42;

| - first assignment to `x`

5 | x = 0;

| ^^^^^ cannot assign twice to immutable variable

|

help: consider making this binding mutable

|

2 | let mut x = 42;

| +++

For more information about this error, try `rustc --explain E0384`.

5

YouCanDeclareVariableMutable,or Shadow It

Unlike other languages, you can shadow the same name in the same scope:

fn main() {

let x = 42;

println!("x = {}", x);

let x = 0;

println!("x = {}", x);

}

This is especially useful if you want to change the type of a variable

fn main() {

let x = 42;

println!("x = {}", x);

let x: String = x.to_string();

println!("x = {}", x);

}

6

Rust is an Expression-Based Language

Functions can optionally end with an expression instead of return:

fn main() {

let x = get_val();

println!("x = {}", x);

}

fn get_val() -> i32 {

42

}

Unlike C/C++, you don’t need a declaration before you use a function

7

YouCanDefine a struct (like C/C++)

struct Point {

x: i32,

y: i32,

}

You can implement associated functions using:

impl Point {

fn distance(&self) -> f64 {

(self.x.powi(2) + self.y.powi(2)).sqrt()

}

}

Note: &self is short for self: &Self

8

Associated Functionswith selfArguments areMethods

We can create a Pointer and call the method like:

fn main() {

let point = Point {x: 3.0, y: 4.0};

println!("Distance: {:.1}", point.distance());

}

Note: normally you create an associated function called new to construct:

impl Point {

fn new(x: f64, y: f64) -> Self {

Point { x: x, y: y }

}

/* distance */

}

Then you can do:

fn main() {

let point = Point::new(3.0, 4.0);

}

9

References are Borrows

In the distance function &self means an immutable borrow

You can have as many immutable borrows as you’d like (no data races!)

You can only have one mutable borrow at a time (again, no data races!)

10

IfWeDon’t Use References,We’re ClaimingOwnership

impl Point {

fn destroy(self) {

println!("Destroying Point {{ x: {}, y: {} }}", self.x, self.y)

}

}

This method claims ownership of the object, when it’s out of scope it’s gone

(the Rust term is “dropped”)

By default, the object is moved (if it can be copied, then it’s copied)

11

TheCompilerWill EnsureWeCan’t Use a DroppedObject

fn main() {

let point = Point::new(3.0, 4.0);

point.destroy();

point.destroy();

}

error[E0382]: use of moved value: `point`

|

21 | let point = Point::new(3.0, 4.0);

| ----- move occurs because `point` has type `Point`,

which does not implement the `Copy` trait

...

24 | point.destroy();

| --------- `point` moved due to this method call

25 | point.destroy();

| ^^^^^ value used here after move

|

note: `Point::destroy` takes ownership of the receiver `self`, which moves `point`

--> src/bin/point.rs:14:16

|

14 | fn destroy(self) {

| ^^^^

For more information about this error, try `rustc --explain E0382`

12

Traits AreMore Flexible Interfaces

Unlike interfaces, different traits can use the same function names

We could try to implement the Copy trait, but it requires the Clone trait:

impl Clone for Point {

fn clone(&self) -> Self {

Point { x: self.x, y: self.y }

}

}

If we implement the copy trait, it means we can do let y = x; (it uses clone)

impl Copy for Point {}

Now we’re destroying a copy every method call, so the compiler lets us

13

YouCanAlso Just Let the CompilerWrite These For You

#[derive(Clone, Copy)]

struct Point {

x: f64,

y: f64,

}

Another useful one:

#[derive(Debug)]

struct Point {

x: f64,

y: f64,

}

fn main() {

let point = Point::new(3.0, 4.0);

dbg!(point);

}

14

There’s Generics Instead of Templates

You can try to implement something like:

fn max<T>(v1: T, v2: T) -> T {

if v1 > v2 {

v1

}

else {

v2

}

}

This doesn’t work because the compiler doesn’t know you’re allowed to do >

15

YouNeed to SpecifyWhich Trait the Generic Needs

For example:

fn max<T: std::cmp::PartialOrd>(v1: T, v2: T) -> T {

if v1 > v2 {

v1

}

else {

v2

}

}

You can also specify multiple traits using +

16

YouCanCreate Traits

trait Speak {

fn speak(&self);

}

struct Cat;

impl Speak for Cat {

fn speak(&self) {

println!("Meow!");

}

}

struct Dog;

impl Speak for Dog {

fn speak(&self) {

println!("Woof!");

}

}

Note: Cat and Dog are zero-sized types

17

YouCanCreate Functions Requiring the Traits

/* Static dispatch, uses generics (multiple versions of function). */

fn call_speak_static(s: &impl Speak) {

s.speak();

}

/* Dynamic dispatch, uses fat pointers (one copy, uses vtables). */

fn call_speak_dynamic(s: &dyn Speak) {

s.speak();

}

Using static or dynamic is a trade-off, Rust has zero-cost abstractions

(that’s why you need to opt-in to dynamic dispatch)

18

enums are Tagged and Strongly Typed

They’re also called variants, since they could represent multiple things:

enum Owned {

Valid(String),

Invalid,

}

fn main () {

let x = Owned::Valid(String::from("Success"));

let y = Owned::Invalid;

if let Owned::Valid(s) = x {

println!("x is Valid: {}", s);

}

if let Owned::Valid(s) = y {

println!("y is Valid: {}", s);

}

}

19

enums are Tagged and Strongly Typed

They’re also called variants, since they could represent multiple things:

enum Owned {

Valid(String),

Invalid,

}

fn main () {

let x = Owned::Valid(String::from("Success"));

let y = Owned::Invalid;

if let Owned::Valid(s) = x {

println!("x is Valid: {}", s);

}

if let Owned::Valid(s) = y {

println!("y is Valid: {}", s);

}

}

20

The Standard LibraryMakesUse of enum

pub enum Option<T> {

None,

Some(T),

}

pub enum Result<T, E> {

Ok(T),

Err(E),

}

If you want to get the value and panic if the value is None, you can use:

option.unwrap() returns T or panics

Functions that may fail usually return a Result

There’s also syntax sugar like ? to return if there’s an Err

21

YouCanAlso UseMatch Expressions

match option {

None => (),

Some(val) => println!("Got {}", val),

}

The compiler ensures you always check every variant

(you can use _ as wildcard)

22

A Box is a Unique Pointer

fn main() {

let six = Box::new(6);

println!("Six = {}", six);

drop(six);

println!("Six = {}", six); /* Compile-time error! */

}

It’s freed when it goes out of scope (you can also drop it early)

23

MovingWill Transfer Ownership

fn foo(val: Box<i32>) {

println!("Val = {}", val);

}

fn main() {

let six = Box::new(6);

println!("Six = {}", six);

foo(six);

println!("Six = {}", six); /* Compile-time error! */

}

24

WeCanTransfer to Threads

fn main() {

let four = Box::new(4);

println!("Main, got: {}", four);

let t = std::thread::spawn(move || {

println!("Thread, got: {}", four);

});

// println!("Main, still: {}", four); /* Compile-time error. */

t.join().unwrap();

}

25

C++HasMove Semantics,But You’re onYour Own

#include <iostream>

#include <memory>

using namespace std;

void test(unique_ptr<int> ptr) {

cout << "ptr = " << *ptr << endl;

}

int main(void) {

unique_ptr<int> six = make_unique<int>(6);

test(std::move(six));

cout << "six = " << *six << endl;

return 0;

}

This code segfaults

26

C++Also DoesNot CareAbout Lifetimes

#include <cstdio>

using namespace std;

int* get_stack() {

int x = 1;

return &x;

}

int main(void) {

int* p = get_stack();

cout << "*p = " << *p << endl;

return 0;

}

This code segfaults

27

YouNeed to Specify Lifetimes,and ThisWill Not Compile

fn get_stack<'a>() -> &'a i32 {

let x: i32 = 42;

&x

}

fn main() {

let y: &i32 = get_stack();

println!("Got {:p}", y);

}

error[E0515]: cannot return reference to local variable `x`

--> src/bin/stack.rs:3:5

|

3 | &x

| ^^ returns a reference to data owned by the current function

For more information about this error, try `rustc --explain E0515`.

error: could not compile `demos` (bin "stack") due to 1 previous error

28

Let’s Create aVertex Type for a Graph

#[derive(Debug)]

struct Vertex<'a> {

value: i32,

edges: Vec<&'a Vertex<'a>>,

}

fn main() {

let a = Vertex {

value: 1,

edges: vec![]

};

let b = Vertex {

value: 2,

edges: vec![&a],

};

let c = Vertex {

value: 3,

edges: vec![&a],

};

dbg!(&a);

dbg!(&b);

dbg!(&c);

}

29

WeCanTry to IncrementAll Values

fn increment_all(vertex: &Vertex) {

vertex.value = vertex.value + 1; /* Compile-error. */

for edge in &vertex.edges {

increment_all(&edge)

}

}

Note, &mut Vertex will not work either since we’re iterating

30

There’s 4MainWays to Get InteriorMutability

Cell

RefCell

Mutex

RwLock

31

WeCanUse aCell Initially

struct Vertex<'a> {

value: Cell<i32>,

edges: Vec<&'a Vertex<'a>>,

}

fn increment_all(vertex: &Vertex) {

let current_value = vertex.value.get();

vertex.value.set(current_value + 1);

for edge in &vertex.edges {

increment_all(&edge)

}

}

32

For Non-Copyable Types,WeCanUse a RefCell

struct Vertex<'a> {

value: RefCell<String>,

edges: Vec<&'a Vertex<'a>>,

}

fn uppercase_all(vertex: &Vertex) {

{

let mut value = vertex.value.borrow_mut();

value.make_ascii_uppercase();

}

for edge in &vertex.edges {

uppercase_all(&edge)

}

}

33

Some Important Threading Traits

Send means you can transfer ownership between threads

Sync means the object is thread-safe

34

With ThreadsWeCan’t Guarantee Lifetimes

struct Vertex {

value: Mutex<String>,

edges: Vec<Arc<Vertex>>,

}

fn uppercase_all(vertex: &Vertex) {

{

let mut value = vertex.value.lock().unwrap();

value.make_ascii_uppercase();

/* Implicit unlock here through drop. */

}

for edge in &vertex.edges {

uppercase_all(&edge)

}

}

We can use a smart pointer, Arc (atomic reference counting)

35

Our ProgramHasNoData Races,or Lifetime Issues

let a = Arc::new(Vertex {

value: Mutex::new(String::from("a")),

edges: vec![]

});

let b = Arc::new(Vertex {

value: Mutex::new(String::from("b")),

edges: vec![a.clone()],

});

let c = Arc::new(Vertex {

value: Mutex::new(String::from("c")),

edges: vec![a.clone()],

});

let t1_c = c.clone();

let t1 = std::thread::spawn(move || {

uppercase_all(&t1_c);

});

let t2_b = b.clone();

let t2 = std::thread::spawn(move || {

uppercase_all(&t2_b);

});

t1.join().expect("t1 join not ok");

t2.join().expect("t2 join not ok");

36

Summary of 4MainWays to Get InteriorMutability

Cell

You can get and set, the type must be copyable

RefCell

Dynamic borrow checking, will panic if there’s two mutable borrows

Mutex

Same as pthread_mutex_t, safe to use with threads

RwLock

Same as pthread_rwlock_t, safe to use with threads

37

Rust EnsuresYour Program isMemory-Safe

The analysis can’t prove every valid memory-safe program, only a subset

(this may be initially frustrating coming from C)

However, you may a TON of assumptions in C/C++,

and they may be invalid as code evolves (have fun debugging)

In Rust, if you know better than the compiler, you can always use unsafe

(likely you just need to focus on unsafe code for debugging)

38

