Performance
Examples

2024 Fall ECE454: Computer Systems Programming Lecture 4
Jon Eyolfson 1.8.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

Takeaways from Last Lecture

We saw a laundry list of compiler optimizations

Your code should be as readable as possible
The compiler is likely to do a better job
The optimization may not even matter in the big picture
(you'll see were to focus your efforts when profiling)

You should give the compiler as much information* as possible
*correct information
Using restrict and __builtin_expected

Writing Readable C Code is Hard

Common things you see are:
define macros
void*

The language itself is not very large, it's also low level

C++ since C++11 has made maijor strides towards readability and efficiency
(light-weight abstractions)

One of the Most Impactful Compiler Optimization is Inlining
Point {
in% getX() {
X;
}

int x;

1

int main(void) {

Point p = /* ... */;

std::cout << p.getX() << std::endl;
}

would get optimized to:

int main(void) {
Point p = /* ... */;
std::cout << p.x << std::endl;

}

Inlining has a Tradeoff

You will avoid the overhead of a function call and return

However, the program size may increase
At runtime you may have worse performance due to the instruction cache

Inlining may allow other compiler optimizations to happen as well

The keyword is just a suggestion to the compiler, it can ignore you

Vecor vs List Problem

Generate N random integers and insert them into (sorted) sequence

Example: 3421
3
34
234
1234

Remove N elements one at a time by going to a random position and
removing the element

Example: 2010
124
24
2

For which N is it better to use a list than a vector (or array)?

Theoretical Complexity

Vector

Inserting
O(logn) for binary search
O(n) for insertion (on average, move half the elements)

Removing
O(1) for accessing
O(n) for deletion (on average, move half the elements)

List

Inserting
O(n) for linear search
O(1) for insertion

Removing
O(n) for accessing
O(1) for deletion

Therefore, based on their complexity lists should be better

Reality of Vectors and Lists

[Shown in class]

Vectors dominate lists performance wise, why?
Binary search vs. linear search complexity dominates
The amount of memory lists use is far higher

64 bit machines:
Vector: 4 bytes per element
List: At least 20 bytes per element

Memory access is slow and indirect, and comes in blocks
Lists are all over memory, so there is a large number of cache misses
A cache miss for a vector will bring a lot more usable data

We Can Also Use perf

pref is a Linux specific profiler that lets you access hardware counters

You can run it before any command, some good arguments:

perf stat -B -e task-clock,cycles,instructions
perf stat -B -e cache-references,cache-misses,branches,branch-misses,page-faults

You may use it in this course, but your devcontainer likely won't support it

perf Example using Vectors on a Raspberry Pi 4

| ran: perf stat -B build/vector-vs-list 266080 --vector

5088.40 msec task-clock:u # 0.994 CPUs utilized

762,299,327 cache-references:u # 1.499 G/sec

6,834,952 cache-misses:u # 8.90% of all cache refs
852,207,596 cycles:u # 1.676 GHz
570,993,225 instructions:u # 8.67 1insn per cycle

<not supported> branches:u
1,103,866 branch-misses:u
280 page-faults:u # 5508.746 [sec

8.511387243 seconds time elapsed

0.582540000 seconds user
0.008040000 seconds sys

perf Example using Lists on a Raspberry Pi 4

| ran: perf stat -B build/vector-vs-list 26000 --list

21,107.95 msec task-clock:u # 1.800 CPUs utilized
1,529,772,607 cache-references:u # 72.474 M/sec
1,4089,358,582 cache-misses:u # 92.13% of all cache refs

37,873,673,434 cycles:u # 1.794 GHz
6,070,348,884 instructions:u # 8.16 insn per cycle
<not supported> branches:u

2,004,950 branch-misses:u

304 page-faults:u # 14.482 [sec

21.118834897 seconds time elapsed

21.1057200008 seconds user
0.004000000 seconds sys

10

More Performance Tips

Don't store unnecessary data in your program
Keep your data as compact as possible
Access memory in a predictable manner

Use vectors instead of lists by default

Programming abstractly can save a lot of time

1

Giving the compiler more information produces better code
Data structures can be very important, more so than complexity

Low-level code != Efficient
You should think at a low level if you need to optimize anything

Readable code is good code to start with
(different hardware will have different optimizations)

12

