
Program

Optimizations

2024 Fall ECE454: Computer Systems Programming

Jon Eyolfson

Lecture 5

1.0.1

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


Today,We’re Creating aVector in C

Recall: a vector is a managed dynamically allocated array

The functions we’ve already written:

/* Create vector of specified length */

vec_ptr new_vec(int len);

/* Retrieve vector element at index, store at *dest

Return 0 if out of bounds, 1 if successful */

int get_vec_element(vec_ptr v, int index, int *dest);

/* Return pointer to start of vector data */

int *get_vec_start(vec_ptr v);

1



WhatWe’ll beOptimizing: Combining Data

We want to be generic, to combine we’ll accumlate the result

of an operation between all elements of the vector

It’ll have an operation, OP, and identity value IDENT, where

x OP IDENT == IDENT

For for a sum, OP is + and IDENT is 0

For for a product, OP is * and IDENT is 1

2



We’llMeasure Cycles per Element (CPE) for Performance

The system I’ll use today is an AMD Ryzen 1800X (it’s a bit old)

We’ll also calculate the sum

This could be our first attempt:

/* combine1: Maximum use of data abstraction */

void combine(vec_ptr v, data_t *dest) {

*dest = IDENT;

for (int64_t i = 0; i < vec_length(v); i++) {

data_t val;

get_vec_element(v, i, &val);

*dest = *dest OP val;

}

}

If we compile it with no optimizations and debugging we get a CPE of 20.22

3



Without ChangingAnything,LetsAddOptimizations

We’ll use -O2 as our default

/* combine1: Maximum use of data abstraction */

void combine(vec_ptr v, data_t *dest) {

*dest = IDENT;

for (int64_t i = 0; i < vec_length(v); i++) {

data_t val;

get_vec_element(v, i, &val);

*dest = *dest OP val;

}

}

Now when we run this we get a CPE of 10.00

The improvements are basically better register allocation and scheduling

What did the compiler miss that we could do?

4



Aside: Using perf

You should now be able to use perf on the UG machines

You can also send commands to perf using named pipe FDs

See example: examples/perf-wrapper.py and examples/src/benchmark.c

It starts perf with --delay -1 meaning disabled,

after calling setup it enables perf

5



TheCompiler Did not Lift vec_lengthOut of the Loop

Since it’s in a different compliation unit, the compiler has to assume it has

side effects and it may not be deterministic

Side effects may include reading or writing global state that may change

For example, if you did a printf in vec_length moving it would

change the behaviour of your program

Also, without knowing the final link step, even if it knew the implementation,

you may not actually use that function at runtime

6



Let’sManually Do LICM,SinceWeKnow It’s Safe

We’ll change our code to:

/* combine2: Take vec_length() out of loop */

void combine(vec_ptr v, data_t *dest) {

int64_t length = vec_length(v);

*dest = IDENT;

for (int64_t i = 0; i < length; i++) {

data_t val;

get_vec_element(v, i, &val);

*dest = *dest OP val;

}

}

Now we get a healthy speedup, our CPE is now 7.00

What’s the next thing we can do?

7



WeCanManually Inline get_vec_element

We’ll change our code around, and get rid of the bounds check

since we know it’s valid:

/* combine3: Array reference to vector data */

void combine(vec_ptr v, data_t *dest) {

int64_t length = vec_length(v);

data_t *data = get_vec_start(v);

*dest = IDENT;

for (int64_t i = 0; i < length; i++) {

*dest = *dest OP data[i];

}

}

Now, our CPE is down to 1.68

8



WeCanTry Removing theMemory Read in the Loop

We can create a local variable called acc to store the result:

/* combine3w: Update *dest within loop only with write */

void combine(vec_ptr v, data_t *dest) {

int64_t length = vec_length(v);

data_t *data = get_vec_start(v);

data_t acc = IDENT;

/* Initialize in event length <= 0 */

*dest = acc;

for (int64_t i = 0; i < length; i++) {

acc = acc OP data[i];

*dest = acc;

}

}

Turns out that didn’t do much, our CPE is still 1.68

9



WeActually Don’t Need toWrite Everytime in the Loop

Since we only have one thread, we know it’s not possible for

anything else to read dest

(not entirely true, what else could happen?)

/* combine4: Array reference, accumulate in temporary */

void combine(vec_ptr v, data_t *dest) {

int64_t length = vec_length(v);

data_t *data = get_vec_start(v);

data_t acc = IDENT;

for (int64_t i = 0; i < length; i++) {

acc = acc OP data[i];

}

*dest = acc;

}

This helps a bit more, our CPE is now 1.47

10



IfWeThinkArray Indexing is Slow,WeCanTry Pointers

We’re just adding a constant value to the memory address,

why do we need to re-calculate?

/* combine4p: Pointer reference, accumulate in temporary */

void combine(vec_ptr v, data_t *dest) {

int64_t length = vec_length(v);

data_t *data = get_vec_start(v);

data_t *dend = data+length;

data_t acc = IDENT;

for (; data < dend; data++)

acc = acc OP *data;

*dest = acc;

}

Turns out our compiler already optimized this for us, the CPU is still 1.47

11



Summary of Results so Far

Benchmark CPE

combine1g 20.22

combine1 10.00

combine2 7.00

combine3 1.68

combine3w 1.68

combine4 1.47

combine4p 1.47

12



Don’t Overuse Pointers in C/C++

It’s very difficult for the compiler to reason about raw pointers

(especially when basically anything is possible)

You should use local variables whenever possible

The compiler can reason about the lifetime of local variables

Only update global state when you have to

13



WhatAbout Trying LoopUnrolling?

We can use the compiler flag -funroll-loops without changing the code

/* combine4: Array reference, accumulate in temporary */

void combine(vec_ptr v, data_t *dest) {

int64_t length = vec_length(v);

data_t *data = get_vec_start(v);

data_t acc = IDENT;

for (int64_t i = 0; i < length; i++) {

acc = acc OP data[i];

}

*dest = acc;

}

This this compiler flag enabled we get a CPE of 1.05

14



Looking at theAssembly

Meson generates a compile_commands.json file in the build directory

I wrote a script for this example, show-assembly.py, it shows the generated

assembly using the same compiler arguments as the build

Otherwise, you can get the compiler to output assembly using the -S flag

For x86 assmebly you may want to also add -masm=intel

15



Automatic LoopUnrolling Every 8 Elements

add edx, DWORD PTR [rax]

add rax, 32

add edx, DWORD PTR -28[rax]

add edx, DWORD PTR -24[rax]

add edx, DWORD PTR -20[rax]

add edx, DWORD PTR -16[rax]

add edx, DWORD PTR -12[rax]

add edx, DWORD PTR -8[rax]

add edx, DWORD PTR -4[rax]

16



AssumedCPUCapabilities

Some instructions can actually run in parallel:

1 load

1 store

2 integer (one may be branch)

1 FP addition

1 FP multiplication or division

17



Instructions Take > 1 Cycle,but Can Be Pipelined

Instruction Latency Cycles/Issue

Load / Store 3 1

Integer Add / Branch 1 1

Integer Multiply 4 1

Double/Single FP Multiply 5 2

Double/Single FP Add 3 1

Integer Divide 36 36

Double/Single FP Divide 38 38

18



SinceWe’ve Unrolled, It’s Easier to OverlapOperations

Load

data[i]

Addedx

edx

t.1

3 cycles

1 cycle

19



WhatAboutManual LoopUnrolling?

Let’s unroll 3 times:

/* combine5uX: Manual loop unrolling X times. */

void combine(vec_ptr v, data_t *dest) {

int64_t length = vec_length(v);

data_t *data = get_vec_start(v);

data_t acc = IDENT;

const int BATCH_SIZE = 3;

int64_t limit = length - BATCH_SIZE + 1;

int64_t i;

for (i = 0; i < limit; i+=BATCH_SIZE) {

acc = acc OP data[i];

acc = acc OP data[i+1];

acc = acc OP data[i+2];

}

/* Fix up any remaining elements */

for (; i < length; ++i) {

acc = acc OP data[i];

}

*dest = acc;

}

This isn’t any better than what the compiler did, our CPE for this is 1.05

20



Surely 4 Times is Better!

We’ll also try this unrolling 5, 8, and 16 times

/* combine5uX: Manual loop unrolling X times. */

void combine(vec_ptr v, data_t *dest) {

int64_t length = vec_length(v);

data_t *data = get_vec_start(v);

data_t acc = IDENT;

const int BATCH_SIZE = 4;

int64_t limit = length - BATCH_SIZE + 1;

int64_t i;

for (i = 0; i < limit; i+=BATCH_SIZE) {

acc = acc OP data[i];

acc = acc OP data[i+1];

acc = acc OP data[i+2];

acc = acc OP data[i+3];

}

/* Fix up any remaining elements */

for (; i < length; ++i) {

acc = acc OP data[i];

}

*dest = acc;

}

This is a bit of an improvement, our CPE is 0.61

21



WhyWas4Times Better?

mov rcx, rdx

add rdx, 1

sal rcx, 4

movdqu xmm1, XMMWORD PTR [rax+rcx]

paddd xmm0, xmm1

cmp rdx, rsi

jb .L3

movdqa xmm1, xmm0

and rdi, -4

psrldq xmm1, 8

mov rdx, rdi

paddd xmm0, xmm1

add rdx, 4

movdqa xmm1, xmm0

psrldq xmm1, 4

paddd xmm0, xmm1

They used new registers, each register can store four 32-bit integers

This is part of the SSE2 ×86-64 Extension for SIMD instructions

SIMD is short for single instruction multiple data

22



It Turns out Unrolling 8 Times is the Best

movdqu xmm2, XMMWORD PTR [rdx]

movdqu xmm3, XMMWORD PTR 16[rdx]

add rcx, 1

add rdx, 32

paddd xmm1, xmm2

paddd xmm0, xmm3

cmp rcx, rsi

jb .L3

paddd xmm0, xmm1

and rdi, -8

movdqa xmm1, xmm0

mov rdx, rdi

psrldq xmm1, 8

add rdx, 8

paddd xmm0, xmm1

movdqa xmm1, xmm0

psrldq xmm1, 4

paddd xmm0, xmm1

It unrolled it a bit more for us, and used more SSE2 registers

23



Maybe It’s Better to Change theOrder of Operations?

/* combine6: Try a different order of operations */

void combine(vec_ptr v, data_t *dest) {

int64_t length = vec_length(v);

data_t *data = get_vec_start(v);

data_t acc = IDENT;

const int BATCH_SIZE = 8;

int64_t limit = length - BATCH_SIZE + 1;

int64_t i;

for (i = 0; i < limit; i+=BATCH_SIZE) {

acc = acc OP (

(data[i] OP data[i+1]) OP (data[i+2] OP data[i+3]) OP

(data[i+4] OP data[i+5]) OP (data[i+6] OP data[i+7])

);

}

/* Fix up any remaining elements */

for (; i < length; ++i) {

acc = acc OP data[i];

}

*dest = acc;

}

Turns out it won’t be better than unrolling 8 or 16 times, our CPE is 0.80

However, it’s better than manual loop unrolling!

24



Changing theOrder of Operations is Better

Since the Processor CanOverlapMore

mov edx, DWORD PTR 4[rax]

mov ecx, DWORD PTR 12[rax]

add rax, 32

add ecx, DWORD PTR -24[rax]

add edx, DWORD PTR -32[rax]

add edx, ecx

mov ecx, DWORD PTR -12[rax]

add ecx, DWORD PTR -16[rax]

add edx, ecx

mov ecx, DWORD PTR -4[rax]

add ecx, DWORD PTR -8[rax]

add edx, ecx

add esi, edx

cmp rdi, rax

jne .L3

and r9, -8

add r9, 8

The trade-off is we use more registers, increasing pressure

(if we use too many they’ll spill on the stack and slow us down)

25



Summary of LoopUnrolling

Benchmark CPE

combine4u 1.05

combine5u3 1.05

combine5u4 0.61

combine5u5 1.05

combine5u8 0.51

combine5u16 0.50

combine6 0.80

26



Some of Your Biggest OptimizationsCome

fromDomain-specific Knowledge

For example, what if we were computing the product of all elements?

Is there an optimization we could make under

certain conditions to skip the calculation?

27



Takeaways

Always profile to make sure you’re optimizing the right thing!

Get the most out of your compiler before going manual

Trade-off: manual optimization vs readable/maintainable code

Limit use of pointers, prefer local variables

Reduce pointer-based arrays and pointer arithmetic

Function pointers and virtual functions (unfortunately)

For highly performance-critical code:

Look at assembly for optimization opportunities

Consider the instruction-parallelism capabilities of CPU

28


