
Memory Hierarchy

2024 Fall ECE454: Computer Systems Programming

Jon Eyolfson

Lecture 7

1.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


MatrixMultiply

double a[4][4];

double b[4][4];

double c[4][4];

/* Multiply n x n matrices a and b */

void mm(double *a, double *b, double *c, int n) {

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

for (intk = 0; k < n; k++) {

c[i][j] += a[i][k] * b[k][j]; // actual work

}

}

}

}

How much performance improvement can we get by optimizing this code?

1



WeCanGet At Least a 160x Speedup

We don’t skip any operations, both implementations have 2n
3
operations

L1 cache reference time is 1-4 ns

However, L1 cache size <= 64 KB

Main memory reference time = 100 ns, 100x slower!

However, memory size >= GBs

Some data:

1 ns = 1/1,000,000,000 second

For a 3.5 GHz CPU (base clock AMD Ryzen 7640U), 1 cycle ≈ 0.3 ns

2



ComputerMemoryHierarchy is a

Trade-off of Capacity and Speed

Tape Drives

Hard Disk Drive (HDD)

SATA Solid State Disk (SSD)

Non-Volatile Memory (NVMe)

Memory (RAM)

CPU Cache

CPU

Capacity Speed (and price)

3



General CacheMechanics

We transfer blocks of memory at a time

A smaller, faster, more expensive memory caches a subset of the blocks

Larger, slower, cheaper memory viewed as partitioned into fixed-size blocks

4



Caching Example

8 912 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Cache

Memory

CPU

Request Block 14Transfer from Block 14 (hit)Request Block 12Request Block 12 (miss)

Request Block 12Transfer Block 12

Transfer from Block 12 (miss)

5



Caching Example

8 912 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Cache

Memory

CPU

Request Block 14Transfer from Block 14 (hit)Request Block 12Request Block 12 (miss)

Request Block 12Transfer Block 12

Transfer from Block 12 (miss)

5



Caching Example

8 912 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Cache

Memory

CPU

Request Block 14Transfer from Block 14 (hit)Request Block 12Request Block 12 (miss)

Request Block 12Transfer Block 12

Transfer from Block 12 (miss)

5



Caching Example

8 912 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Cache

Memory

CPU

Request Block 14Transfer from Block 14 (hit)Request Block 12Request Block 12 (miss)

Request Block 12Transfer Block 12

Transfer from Block 12 (miss)

5



Caching Example

8 912 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Cache

Memory

CPU

Request Block 14Transfer from Block 14 (hit)Request Block 12Request Block 12 (miss)

Request Block 12Transfer Block 12

Transfer from Block 12 (miss)

5



Caching Example

8 912 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Cache

Memory

CPU

Request Block 14Transfer from Block 14 (hit)Request Block 12Request Block 12 (miss)

Request Block 12Transfer Block 12

Transfer from Block 12 (miss)

5



Caching Example

8 912 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Cache

Memory

CPU

Request Block 14Transfer from Block 14 (hit)Request Block 12Request Block 12 (miss)

Request Block 12Transfer Block 12

Transfer from Block 12 (miss)

5



ThereAre TwoPolicies

Placement policy: Chooses a set of blocks

where a block (e.g. 12) goes in cache

Replacement policy: Determines which block in set gets evicted (victim)

6



Cache PerformanceMetrics

Miss Rate

Fraction of memory references not found in cache

miss rate = misses / accesses = 1 - hit rate

3-10% for L1, small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

Time to deliver a line in the cache to the processor

Includes time to determine whether the line is in the cache

1-4 clock cycles for L1, 5-20 clock cycles for L2

Miss Penalty

Additional time required due to a miss

Typically 50-400 cycles for main memory

7



TheNumbers in Context

Huge difference between a hit and a miss

100x between L1 and main memory

Performance with 99% hit rate doubles compared to 97%!

Say cache hit time = 1 cycle, miss penalty of 100 cycles

Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

This is why miss (instead of hit) rate is used to think about

cache performance, 3% is much worse than 1% miss rate

8



Cold CacheMissesCan’t BeAvoided

Occurs on first access to a block

Can’t do too much about these (except prefetching—more later)

9



TwoMajor Types of CacheMisses

Conflict miss

Placement policy of most hardware caches limit blocks to a small

subset (sometimes a singleton) of the available cache slots

e.g., block i must be placed in slot (i mod 8)

Conflict misses occur when the cache is large enough,

but multiple data objects all map to the same slot

e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

Conflict misses are less of a problem today (more later)

Capacity miss

Occurs when the set of active cache blocks is larger than the cache

Working set is larger than cache size

This is the most significant problem today

10



WhyCachesWork

Locality: Programs tend to use data and instructions with

addresses equal or near to those they have used recently

Temporal locality:

Recently referenced items are likely to be referenced soon after

Spatial locality:

Items with nearby addresses tend to be referenced close together

11



Locality Example

int sum = 0;

for (int i = 0; i < n; i++) {

sum += a[i];

}

return sum;

Data

Temporal: sum referenced in each iteration

Spatial: close by elements of array a accessed (in stride-1 pattern)

Instructions

Temporal: cycle through loop repeatedly

Spatial: reference close by instructions in sequence

Important to be able to assess the locality in your code!

12



General CacheOrganization (L1,L2,and L3)

Block Block ... Block

Block Block ... Block

... ... ... Block

Block Block Block Block

Sets

S = 2
s

Entries (per set)

E = 2
e

We can define the block size as: B = 2
b

Therefore, Cache Size = S× E× B = 2
s+e+b

13



HowToGet the Tag fromanAddress

remaining bits s bits b bits

Tag Set Offset

Address

For most modern systems, the cache block size is 64 bytes, b = 6 bits

14



ACache Entry Stores if It’s Valid, the Tag,andData

1 bit tag bits 64 bytes

V Tag Data

15



DirectMappedCache (E = 1)

There is only one block per set

That means that only one entry from each tag can be in cache at a time

Block

Block

...

Block

Sets

S = 2
s

16



Example Lookup

Direct mapped cache with 64 sets

6 offset bits

6 set bits

First, we find which set the entry would be in, then see if the tag matches

If it’s not a match, old block is evicted and replaced with entire new block

Address: 0xFEEDFACECAFEBEEF

Set: 0b111011 = 59

Tag: 0xFEEDFACECAFEB

Data: 0xFEEDFACECAFEBEC0 - 0xFEEDFACECAFEBEFF

Adddress: 0x1EC8

Set: 0b111011 = 59

Tag: 0x1

Data: 0x1EC0 - 0x1EFF

17



TheNumber of Entries in a Set is Called theAssociativity

For an 8-way associative cache, we can store 8 different tags per set

Block Block ... Block

Block Block ... Block

... ... ... Block

Block Block Block Block

Sets

S = 2
s

Entries (per set)

E = 2
e

For an access, it scans the set for a matching tag

If it’s not in cache we need to replace an existing block

Replacement policies: random, least recently used (LRU), etc.

18



Example CPU -AMDRyzen 5 7640U

L1 Cache: 64 KiB (per core)

There’s two L1 caches: one for instructions, the other for data,

8-way set associative cache

Each L1 each is 32 KiB (2
15
), therefore it has 64 sets (2

15−6−3
)

L2 Cache: 1 MiB (per core)

This cache contains both instructions and data

8-way set associative cache

L3 Cache: 16 MiB (shared)

This cache contains both instructions and data

16-way set associative cache

Cache latency: 50 cycles

19



FindingCache Information on Linux

You can use the following commands:

lscpu

lstopo

You can also explore in the /sys directory

ls /sys/devices/system/cpu/cpu0/cache/

20



WhatAboutWrites?

Multiple copies of data exist in L1, L2, main memory, disk

Need to ensure consistency

What to do on a write-hit?

Write-through (write to cache and immediately to memory)

Write-back (defer write to memory until line is replaced)

Need a dirty bit (cache line different from memory or not)

What to do on a write-miss?

Write-allocate (load into cache, update line in cache)

Good if more reads and writes to the location follow

No-write-allocate (write immediately to memory)

For streaming writes (write once and then no reads in the near future)

Typically:

Write-through + No-write-allocate

Write-back + Write-allocate

21



The BestWay to FindMiss Rates iswith perf

On most systems you can see the number of accesses and misses

L1-dcache-loads [Hardware cache event]

L1-dcache-load-misses [Hardware cache event]

L1-dcache-stores [Hardware cache event]

L1-dcache-store-misses [Hardware cache event]

L1-dcache-prefetches [Hardware cache event]

L1-dcache-prefetch-misses [Hardware cache event]

L1-icache-loads [Hardware cache event]

L1-icache-load-misses [Hardware cache event]

L1-icache-prefetches [Hardware cache event]

L1-icache-prefetch-misses [Hardware cache event]

You can see a list of supported events with perf list

22


