
Cache Optimizations

2024 Fall ECE454: Computer Systems Programming

Jon Eyolfson

Lecture 9

1.0.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/


Write Code That Has Locaility

Temporal locality:

Recently referenced items are likely to be referenced soon after

Spatial locality:

Items with nearby addresses tend to be referenced close together

How to achieve locality?

Proper choice of algorithm

Loop transformations

1



Row-Major Order: Elements of a Roware Beside EachOther

We could represent a 2D array using a plain 1D array

Assuming we have an int array, table, we can index elements:

table[rowIndex * NUM_COLS + colIndex]

The following is equivalent:

table[0][0] table[0]

table[0][1] table[1]

table[0][2] table[2]

table[1][0] table[3]

table[1][1] table[4]

table[1][2] table[5]

&table[i][j] is also the same as table + i * NUM_COLS + j

2



Let’s Assume a Simple Cache

The cache block size (line size) is 8 bytes

Therefore, it could hold 2 ints

It’s 2-way set associative (2 blocks per set),

with a single set (in this case it’s the same as fully associative)

The total size is two blocks, and we’ll assume LRU

(least recently used) replacement policy

3



QuestionsWeShouldAskOurselves

How many elements are there per block?

Does the data structure fit in the cache?

Do I reuse blocks over time?

In what order am I accessing blocks?

4



Let’s Start with a SimpleArray

#define N 4

int A[N];

for (int i = 0; i < N; ++i) {

/* ... = */ A[i];

}

What’s the miss rate in this scenario? (assuming the array is cache aligned)

Miss rate = # misses / # accesses

In this case: A[0] is a miss, which brings in A[1],

and A[2] is a miss, which brings in A[3], miss rate = 50%

In general for this scenario the miss rate is
N/2
N

= 1

2
= 50%

5



Let’s Start with a SimpleArray

#define N 4

int A[N];

for (int i = 0; i < N; ++i) {

/* ... = */ A[i];

}

What’s the miss rate in this scenario? (assuming the array is cache aligned)

Miss rate = # misses / # accesses

In this case: A[0] is a miss, which brings in A[1],

and A[2] is a miss, which brings in A[3], miss rate = 50%

In general for this scenario the miss rate is
N/2
N

= 1

2
= 50%

5



Let’s AddAnother Loop

#define N 4

int A[N];

for (int k = 0; k < P; ++k) {

for (int i = 0; i < N; ++i) {

/* ... = */ A[i];

}

}

What’s our miss rate now?

Since the array fits in cache, the miss rate is:
N/2
N×P = 1

2×P

For sequential accesses with re-use, if data fits in the cache,

the first visit suffers all the misses

6



Let’s AddAnother Loop

#define N 4

int A[N];

for (int k = 0; k < P; ++k) {

for (int i = 0; i < N; ++i) {

/* ... = */ A[i];

}

}

What’s our miss rate now?

Since the array fits in cache, the miss rate is:
N/2
N×P = 1

2×P

For sequential accesses with re-use, if data fits in the cache,

the first visit suffers all the misses

6



What If the Data DoesNot Fit in Cache?

#define N 8

int A[N];

for (int k = 0; k < P; ++k) {

for (int i = 0; i < N; ++i) {

/* ... = */ A[i];

}

}

What’s our miss rate now?

It’s the same as the code that only uses each element once:
N/2
N

= 1

2
= 50%

7



Now,WhatAbout a 2DArray?

#define N 2

int A[N];

for (int i = 0; i < N; ++i) {

for (int j = 0; j < N; ++j) {

/* ... = */ A[i][j];

}

}

What’s the miss rate?

It’s exactly the same as accessing a 1D array, 50%

It doesn’t matter if the entire array fits in cache or not

8



Now,WhatAbout a 2DArray?

#define N 2

int A[N];

for (int i = 0; i < N; ++i) {

for (int j = 0; j < N; ++j) {

/* ... = */ A[i][j];

}

}

What’s the miss rate?

It’s exactly the same as accessing a 1D array, 50%

It doesn’t matter if the entire array fits in cache or not

8



Let’s Access theArray in ColumnOrder

#define N 2

int A[N];

for (int j = 0; j < N; ++j) {

for (int i = 0; i < N; ++i) {

/* ... = */ A[i][j];

}

}

What’s the miss rate now?

In this case: A[0] is a miss, which brings in A[1],

the next access to A[2] is a miss, which brings in A[3],

after we access A[1] and A[3] which are hits

Miss rate is 50% if the 2D array fits in cache (same as sequential)

9



What Happens if the 2DArray DoesNot Fit in Cache?

#define N 4

int A[N];

for (int j = 0; j < N; ++j) {

for (int i = 0; i < N; ++i) {

/* ... = */ A[i][j];

}

}

What’s the miss rate now? Converting to a 1D array we access:

A[0], A[4], A[8], A[12], A[1], etc.

The miss rate is now 100%!

10



What Happens if the 2DArray DoesNot Fit in Cache?

#define N 4

int A[N];

for (int j = 0; j < N; ++j) {

for (int i = 0; i < N; ++i) {

/* ... = */ A[i][j];

}

}

What’s the miss rate now? Converting to a 1D array we access:

A[0], A[4], A[8], A[12], A[1], etc.

The miss rate is now 100%!

10



This isWhy Loop Interchange is So Important

Changing

#define N 4

int A[N];

for (int j = 0; j < N; ++j) {

for (int i = 0; i < N; ++i) {

/* ... = */ A[i][j];

}

}

to

#define N 4

int A[N];

for (int i = 0; i < N; ++i) {

for (int j = 0; j < N; ++j) {

/* ... = */ A[i][j];

}

}

changes our miss rate of 100% to 50%

11



WhatAboutMatrixMultiplication?

for (int i = 0; i<N; i++) {

for (int j = 0; j<N; j++) {

for (int k = 0; k<N; k++) {

/* ... = */ A[i][k] * B[k][j];

}

}

}

We can argue about this when i = 1

12



Miss RateWhen i = 1

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

A00 A01A02 A03

B00 B01B10 B11B20 B21B30 B31

Cache: Miss rate: 75%

13



Miss RateWhen i = 1

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

A00 A01A02 A03

B00 B01B10 B11B20 B21B30 B31

Cache: Miss rate: 75%

13



Miss RateWhen i = 1

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

A00 A01A02 A03

B00 B01B10 B11B20 B21B30 B31

Cache: Miss rate: 75%

13



Miss RateWhen i = 1

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

A00 A01A02 A03

B00 B01B10 B11B20 B21B30 B31

Cache: Miss rate: 75%

13



Miss RateWhen i = 1

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

A00 A01A02 A03

B00 B01B10 B11B20 B21B30 B31

Cache: Miss rate: 75%

13



Miss RateWhen i = 1

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

A00 A01A02 A03

B00 B01B10 B11B20 B21B30 B31

Cache: Miss rate: 75%

13



Miss RateWhen i = 1

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

A00 A01A02 A03

B00 B01B10 B11B20 B21B30 B31

Cache: Miss rate: 75%

13



Miss RateWhen i = 1

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

A00 A01A02 A03

B00 B01B10 B11B20 B21B30 B31

Cache: Miss rate: 75%

13



Miss RateWhen i = 1

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

A00 A01A02 A03

B00 B01B10 B11B20 B21B30 B31

Cache: Miss rate: 75%

13



Miss RateWhen i = 1

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

A00 A01A02 A03

B00 B01B10 B11B20 B21B30 B31

Cache: Miss rate: 75%

13



Generalizing the Previous Example for arraysA and B

Assuming a row does not fit in cache, arrays are cache aligned,

and we can fit D elements in the cache

We’ll have
1

D
×N+N misses out of N+N accesses,

therefore our miss rate is:
1

2×D + 1

2

14



ImprovingCache Reuse

Misses are expensive

L1 cache reference: 1-4 ns (L1 cache size: 32 KB)

Main memory reference: 100 ns (memory size: 4-256 GBs)

Matrix multiplication has lots of data re-use

Key idea: Try to use entire cache block once it is loaded

Challenge: We need to work with both rows and columns

Solution:

Operate in sub-squares of the matrices

One sub-square per matrix should fit in cache simultaneously

Heavily re-use the sub-squares before loading new ones

Called Tiling or Blocking (a sub-square is a tile)

15



ImprovingCache Reuse

Misses are expensive

L1 cache reference: 1-4 ns (L1 cache size: 32 KB)

Main memory reference: 100 ns (memory size: 4-256 GBs)

Matrix multiplication has lots of data re-use

Key idea: Try to use entire cache block once it is loaded

Challenge: We need to work with both rows and columns

Solution:

Operate in sub-squares of the matrices

One sub-square per matrix should fit in cache simultaneously

Heavily re-use the sub-squares before loading new ones

Called Tiling or Blocking (a sub-square is a tile)

15



Implementation for TiledMatrixMultiplication

Where T is the number of elements we can fit on a cache line

for (int i = 0; i < MATRIX_N; i += T)

for (int j = 0; j < MATRIX_N; j += T)

for (int k = 0; k < MATRIX_N; k += T)

for (int i1 = i; i1 < i+T; i1++)

for (int j1 = j; j1 < j+T; j1++)

for (int k1 = k; k1 < k+T; k1++)

c[i1][j1] += a[i1][k1]*b[k1][j1];

16



MissAnalysis for TiledMatrixMultiply

Assuming we can fit each title in cache (cache size is more than 3× T
3
),

our miss rate for matrices AT and BT are:

2

T
×N misses out of 2N accesses, giving us a miss rate of

1

T

A massive difference from before!

17


