
Lecture 15 - Reentrant/Thread-Safe and
Assignments

ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

February 6, 2012

Assignment 1 Assignment 2

Previous Lecture

Difference between reentrant and thread-safe functions

Reentrancy
• Has nothing to do with threads, it assumes a single thread
• Reentrant means the execution can context switch at any

point in in a function, call the same function and complete
before returning to the original function call

• Result does not depend on where the context switch happens

Thread-safety
• Result does not depend on any interleaving of threads from

concurrency or parallelism
• In other words, you do not get unexpected results

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Another Definition of Thread-Safe Functions

A function whose effect, when called by two or more threads, is
guaranteed to be as if the threads each executed the function one
after another in an undefined order, even if the actual execution is
interleaved

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Good Example of a Midterm Question

v o i d swap (i n t ∗x , i n t ∗y) {
i n t t ;
t = ∗x ;
∗x = ∗y ;
∗y = t ;

}

• Is the following code thread-safe?

• Write some expected results for running two calls in parallel

• Argue these expected results always hold, or show an example
where they do not

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Grade Distribution

0

(0
,
5

]

(5
,
1

0
]

(1
0

,
1

5
]

(1
5

,
2

0
]

(2
0

,
2

5
]

(2
5

,
3

0
]

(3
0

,
3

5
]

(3
5

,
4

0
]

(4
0

,
4

5
]

(4
5

,
5

0
]

(5
0

,
5

5
]

(5
5

,
6

0
]

(6
0

,
6

5
]

(6
5

,
7

0
]

(7
0

,
7

5
]

(7
5

,
8

0
]

(8
0

,
8

5
]

(8
5

,
9

0
]

(9
0

,
9

5
]

(9
5

,
1

0
0

]

0

5

10

15

20

25

30

Average: ˜89

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Common Mistakes (1)

Casting unsigned long to void*

• Okay if you put down in comments you are assuming 64-bit
• Generally, this is unsafe, and should be avoided

Didn’t handle uneven job distribution

• What if iterations does not divide evenly by the number of
threads?

• Okay if you stated in comments that this will not affect the
results much

• You should, however, have considered it

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Common Mistakes (2)

Failed to destroy the mutex

• You need to call pthread_mutex_destroy to free the
resources associated with the mutex

Failed to free memory

• Okay if you stated in comments that this is cleaned up in
Linux

• Again, you should, however, have considered it
• Write down in the comments who is responsible for freeing

memory
• Use valgrind to help detect memory leaks

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Solution with a Mutex (1)

s t a t i c pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER ;

v o i d ∗ run (v o i d ∗ arg)
{

uns i gned long i n t p r i v a t e _ c o u n t =
monteca r l o (i t e r a t i o n s / num_threads) ;

pthread_mutex_lock(&mutex) ;
count += p r i v a t e _ c o u n t ;
pthread_mutex_unlock(&mutex) ;
r e t u r n NULL ;

}

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Solution with a Mutex (2)

pthread_t ∗ t h r e a d s =
ma l l o c (s i z e o f (pthread_t)∗ num_threads) ;

i n t i ;
f o r (i = 0 ; i < num_threads ; ++i) {

p t h r e a d _ c r e a t e (& t h r e a d s [i] , NULL , &run , NULL) ;
}
f o r (i = 0 ; i < num_threads ; ++i) {

p t h r e a d _ j o i n (t h r e a d s [i] , NULL) ;
}
f r e e (t h r e a d s) ;
pthread_mutex_dest roy (&mutex) ;

// Do the r em ind ing number o f i t e r a t i o n s we couldn ’ t
// e v e n l y d i v i d e i n t o t h r e a d s
count += monteca r l o (i t e r a t i o n s % num_threads) ;

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Solution with a Return Value (1)

v o i d ∗ run (v o i d ∗ arg)
{

// The j o i n i n g t h r e a d i s r e s p o n s i b l e f o r f r e e i n g t h i s
// memory
uns i gned long i n t ∗ r e t =

ma l l o c (s i z e o f (uns i gned long i n t)) ;
∗ r e t = monteca r l o (i t e r a t i o n s / num_threads) ;
r e t u r n (v o i d ∗) r e t ;

}

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Solution with a Return Value (2)

// I ’m assuming i > t , so we don ’ t have to worry about
// t h a t type o f j ob a l l o c a t i o n
pthread_t ∗ t h r e a d s =

ma l l o c (s i z e o f (pthread_t)∗ (num_threads − 1)) ;
i n t i ;
f o r (i = 0 ; i < (num_threads − 1) ; ++i) {

p t h r e a d _ c r e a t e (& t h r e a d s [i] , NULL , &run , NULL) ;
}
// Do t h i s th read ’ s s h a r e and rem ind ing number o f
// i t e r a t i o n s we couldn ’ t e v e n l y d i v i d e i n t o t h r e a d s
count += monteca r l o (i t e r a t i o n s / num_threads

+ i t e r a t i o n s % num_threads) ;

f o r (i = 0 ; i < (num_threads − 1) ; ++i) {
v o i d ∗ r e t ;
p t h r e a d _ j o i n (t h r e a d s [i] , &r e t) ;
count += ∗((uns i gned l ong i n t ∗) r e t) ;
// Free the memory from the t h r e a d
f r e e (r e t) ;

}
f r e e (t h r e a d s) ;

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Benchmarking - Sequential and Parallel Physical Cores

• Make sure your results are consistent (nothing else is running)

• Follow the 10 second guideline (60 second runs are no fun)

• Since we are assuming 100% parallel, the runtime should
decrease by a factor of physicalcores

• Results should be close to predicted, therefore our assumption
holds (could estimate P in Amdahl’s law and find it’s 0.99)

• Overhead of threading (create, joining, mutex?) is
insignificant for this program

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Benchmarking - Parallel Virtual CPUs vs Virtual CPUs + 1

• Hyperthreading results were weird, slower the majority of the
time

• Table 4 should be slower than Table 3 (or Table 3)

• It’s better to have a number of threads that match the
number of virtual CPUs then an unbalanced number

• Difference because, if it’s uneven, one thread will constantly
be context switching between virtual CPUs

• Worse case for 9 threads on 8 virtual CPUs: 8 threads
complete, each doing a ninth of the work in parallel, last ninth
of the work runs only on one CPU

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Assignment 2

• Go over the assignment

• Identify anything that may be a problem

• Take away points
• You are much better at parallelizing code than your compiler
• OpenMP fine-grained task parallelism isn’t that great

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

Assignment 1 Assignment 2

Summary

• Clearer explanation of reentrant and thread-safe (hopefully)

• Comfortable programming Pthreads / preventing data races

• Always remember to free resources (the earlier the better)

• Usually the best number of threads is the same as the number
of physical cores or virtual CPUs (unbalanced threads are bad)

Lecture 15 - Reentrant/Thread-Safe and Assignments University of Waterloo

	Assignment 1
	Assignment 2

