Lecture 29 - Performance Tweaks

ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

March 28, 2012



Assignment 3 Assignment 4 Other Approximations

Introduction

= We'll look into the improvements people made in Assignment
3

= Improvements we could make to Assignment 4

= Some other examples of doing less work

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Baseline Performance

= distance took the majority of the time, followed by
crossover then selection

= The hash table's at function took a silly amount of time,
followed by find in crossover

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Hashtables vs. Arrays/Vectors

You shouldn’t assume a hashtable is always fast for every data
type

= There is a lot of overhead to hash an int to another number
then access that number indirectly, in this case a simple 2
dimensional array/vector is much better

= We lose some generality since our indexs can no longer be
more complex things like strings, if needed though, we could
convert between numbered indexes and strings

= This alone should account for about a 2.7x speedup

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Change 1

double GATSP::distance(const tour_container& tour)

{

- auto i = tour.begin();
- double distance = distances[first_index][*i];
- while (i != tour.end()) {
- auto& distances_i = distances.at(xi);
- i
- if (i I= tour.end()) {
distance += distances_i.at(xi);
- else {
- distance += distances_i.at(first_index);
}
tour_container::size_type n = tour.size ();
double distance = distances[first_index][tour[0]];
for (tour_container::size_type i = 0; i < (n—1); ++i) {

distance += distances[tour[i]][tour[i + 1]];
}
distance += distances[tour[n—1]][first_index];
return distance;

+ A+t

Lecture 29 - Performance Tweaks University of Waterloo




Assignment 3 Assignment 4 Other Approximations

Removing the find

= The find in crossover checks that the element from the
second parent was already added in the child, we can remove
this

= Instead of going and searching the sub-tour each time, make a
lookup array which has true for every index in the sub-tour
and false otherwise

= Replace the find with an access to this array

= This is about a 1.55 speedup over the last change
(overall 4.19x)

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Change 2

+ std :: vector<bool> lookup(a.tour.size(), false);
+ for (auto i = child_copy_begin; i < child_copy_end;
i) |
+ lookup[*i] = true;
o
+
auto i = child.tour.begin();
for (auto& index : b.tour) {
/* Search to see if this index is already included
as part of the copy (from a) x/
- auto result = std:: find(child_copy_begin,
child_copy_end, index);
— if (result = (child.tour.begin() + offset_end)) {
+ if (lookup[index] = false) {

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Reordering the sort

= At the beginning of iteration the population already has
valid distance values, it could also be sorted at this point

= Replace all of the min_element or max_element with
population.back() or population.front()

= We can also replace checking if the fitness sum is going to be
zero, by checking if the largest element is zero

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Change 3

/* Find the maximum distance, at this point the
metadata for each individual should be its
distance */
double distance_max = std :: max_element(population.beg..
+ double distance_max = population.back (). metadata.dis ...

/+* Normalize the fitness values x/

- double fitness_sum = std::accumulate(population.beg...
if (fitness_sum != 0.0) {

- for (auto& individual : population) {

— individual . metadata.normalized_fitness = ind ...

+ if (population.front().metadata.fitness != 0.0) {

+ double fitness_sum = std::accumulate(population.b..

+ for (auto& individual : population) {

+ individual . metadata. normalized_fitness = ind ...

+ }

Other places too...

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Merging in Selections

= Get rid of the selection container all together and just do it all
in a single step

= Do the preprocessing
= for(... 1 = 0; i < kPopulationSize; ++i)
= Pick the two individuals

= Crossover
= Randomly mutuate

= This also seperates out sequential code from obviously parallel
code!

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Adding OpenMP

= Just add the following around the previous loop

= #pragma omp parallel for shared(new_population)

= Make new_population with kPopulationSize default
constructed elements so each thread can update its own index
without a critical section

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Optimize Uniform Selections

= |t so happens with the input and these genetic operations, the
population gets homogeneous

= All of the fitness values are equal to 0, therefore there is an
equally likely chance to select them

= Checking for them is easy too! You just see if the largest
element (which is at the front) is 0

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Change 4

if (uniform_selection) {
/* Pick the first individual x*/
first = population—>begin ();
std ::advance(first ,
rand_r(&seed) % kPopulationSize);

/*x Pick the second individual x/
second = population—>begin ();
std :: advance(second,
rand_r(&seed) % kPopulationSize);

= Also, change the calls from rand to rand_r and use a
threadprivate seed set to some initial value

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Minor Changes

= Compiler flags add much speedup in this case, but they're free
and easy

= Use -Ofast and -D_GLIBCXX_PARALLEL (which doesn't seem
to parallelize the sort, which is what | wanted

= [nline distance, crossover and mutate

= Use an unsigned short instead of an unsigned int for the
index type

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Some Fixes

= cl_float4 won't let you access x and it was suggested to try
s0, which didn’t work either

= Add -U__STRICT_ANSI__ to CXXFLAGS (already fixed in the
provided tarball)

= The platform may be messed up on ece459-1 since there are
two of them, should be fixed shortly

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Introduction

= You're computing the forces (or accelerations since m = 1) of
all points in a space

= The forces for points far away are small and are costly to
compute

= We can approximate these other points or disregard them
(depending on how important the speedup/accuracy trade-off
is for you)

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Binning

= Real solutions would probably use a specialized data structure
like and octree but an easier way to do it is to seperate the
points into bins

= In this case our space is 10003, we can use 1000 bins of size
1003

= Compute the centre of mass for each bin, which we can do in
parallel

= You also want to keep track of which points are in which bin

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Computing Forces

= Go over every bin

= Use all of the points in adjacent bins to compute the forces on
each point in the bin

= Use the centres of mass to compute the forces with all other
bins

= |gnore bins greater than a set number of bins away

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Introduction

= So, previously we traded off accuracy for performance, we can
generalize this a bit

= Martin Rinard summarized these types of improvements
[Rinard et al., 2010]:

= Early phase termination [Rinard, 2007]
= Loop perforation [Hoffmann et al., 2009]

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Early Phase Termination

= Recall barriers, we have to wait for every thread to reach the
barrier, even if one is horribly slow

= Well, let's kill the slowest thread (this may change the
meaning of the program)

= We could develop a statistical model of the program behaviour
and only kill tasks that don't introduce unacceptable
distortions

= You could output a confidence interval as well

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Loop Perforation

= Same idea to sequential programs, just throw away some data
if it's not that useful (in a general manner)

for (i = 0; i < n; 4+i) sum += numbers[i];
changed to
for (i = 0; i < n; i 4= 2) sum += numbers[i];

sum *x= 2;

= Given an appropriately distributed set of numbers, you would
get a speedup of 2

= The paper does detail this for video encoding, giving
indistinguishable results

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 As ent 4 Other Approximations

Summary

= A bunch of optimizations you could make to a real problem
like in assignment 3

= Most performance boosts require a combination of knowledge:

= Algorithms

= Data structures

= Hardware

= Domain knowledge

= Approximation algorithms are a good way to get some
speedup if you don’t mind the trade-off

Lecture 29 - Performance Tweaks University of Waterloo



Other Approximations

References |

[ Hoffmann, H., Misailovic, S., Sidiroglou, S., Agarwal, A., and
Rinard, M. (2009).
Using code perforation to improve performance, reduce energy
consumption, and respond to failures.
Technical Report MIT-CSAIL-TR-2009-042, MIT CSAIL,
Cambridge, MA.

[§ Rinard, M. (2007).
Using early phase termination to eliminate load imbalances at
barrier synchronization points.
In Proceedings of OOPSLA 2007, pages 369-386, Montreal,
Quebec, Canada.

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

References |l

[§ Rinard, M., Hoffmann, H., Misailovic, S., and Sidiroglou, S.
(2010).
Patterns and statistical analysis for understanding reduced
resource computing.
In Proceedings of Onward! 2010, pages 806—821,
Reno/Tahoe, NV, USA. ACM.

Lecture 29 - Performance Tweaks University of Waterloo



	Assignment 3
	Assignment 4
	Other Approximations

