
Lecture 29 - Performance Tweaks
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

March 28, 2012
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Introduction

• We’ll look into the improvements people made in Assignment
3

• Improvements we could make to Assignment 4

• Some other examples of doing less work
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Baseline Performance

• distance took the majority of the time, followed by
crossover then selection

• The hash table’s at function took a silly amount of time,
followed by find in crossover
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Hashtables vs. Arrays/Vectors

• You shouldn’t assume a hashtable is always fast for every data
type

• There is a lot of overhead to hash an int to another number
then access that number indirectly, in this case a simple 2
dimensional array/vector is much better

• We lose some generality since our indexs can no longer be
more complex things like strings, if needed though, we could
convert between numbered indexes and strings

• This alone should account for about a 2.7x speedup
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Change 1

doub l e GATSP : : d i s t a n c e ( c o n s t t o u r _ c o n t a i n e r& t o u r )
{

− auto i = t o u r . beg i n ( ) ;
− doub l e d i s t a n c e = d i s t a n c e s [ f i r s t _ i n d e x ] [ ∗ i ] ;
− w h i l e ( i != t o u r . end ( ) ) {
− auto& d i s t a n c e s _ i = d i s t a n c e s . a t (∗ i ) ;
− ++i ;
− i f ( i != t o u r . end ( ) ) {
− d i s t a n c e += d i s t a n c e s _ i . a t (∗ i ) ;
− }
− e l s e {
− d i s t a n c e += d i s t a n c e s _ i . a t ( f i r s t _ i n d e x ) ;
− }
+ t o u r _ c o n t a i n e r : : s i z e _ t y p e n = t o u r . s i z e ( ) ;
+ doub l e d i s t a n c e = d i s t a n c e s [ f i r s t _ i n d e x ] [ t o u r [ 0 ] ] ;
+ f o r ( t o u r _ c o n t a i n e r : : s i z e _ t y p e i = 0 ; i < ( n −1); ++i ) {
+ d i s t a n c e += d i s t a n c e s [ t o u r [ i ] ] [ t o u r [ i + 1 ] ] ;

}
+ d i s t a n c e += d i s t a n c e s [ t o u r [ n − 1 ] ] [ f i r s t _ i n d e x ] ;

r e t u r n d i s t a n c e ;
}
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Removing the find

• The find in crossover checks that the element from the
second parent was already added in the child, we can remove
this

• Instead of going and searching the sub-tour each time, make a
lookup array which has true for every index in the sub-tour
and false otherwise

• Replace the find with an access to this array

• This is about a 1.55 speedup over the last change
(overall 4.19x)
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Change 2

+ s t d : : v e c to r <bool> lookup ( a . t o u r . s i z e ( ) , f a l s e ) ;
+ f o r ( auto i = ch i l d_copy_beg in ; i < ch i ld_copy_end ;

++i ) {
+ lookup [ ∗ i ] = t r u e ;
+ }
+

auto i = c h i l d . t o u r . beg i n ( ) ;
f o r ( auto& i n d e x : b . t o u r ) {

/∗ Search to s e e i f t h i s i n d e x i s a l r e a d y i n c l u d e d
as p a r t o f the copy ( from a ) ∗/

− auto r e s u l t = s t d : : f i n d ( ch i ld_copy_beg in ,
ch i ld_copy_end , i n d e x ) ;

− i f ( r e s u l t == ( c h i l d . t o u r . beg i n ( ) + o f f s e t _ e n d ) ) {
+ i f ( lookup [ i n d e x ] == f a l s e ) {
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Reordering the sort

• At the beginning of iteration the population already has
valid distance values, it could also be sorted at this point

• Replace all of the min_element or max_element with
population.back() or population.front()

• We can also replace checking if the fitness sum is going to be
zero, by checking if the largest element is zero
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Change 3

/∗ Find the maximum d i s t a n c e , a t t h i s p o i n t the
metadata f o r each i n d i v i d u a l s h o u l d be i t s
d i s t a n c e ∗/

− doub l e d istance_max = s t d : : max_element ( p o p u l a t i o n . beg . .
+ doub l e d istance_max = p o p u l a t i o n . back ( ) . metadata . d i s . . .

/∗ Norma l i ze the f i t n e s s v a l u e s ∗/
− doub l e f i t n e s s _ s u m = s t d : : accumulate ( p o p u l a t i o n . beg . . .
− i f ( f i t n e s s _ s u m != 0 . 0 ) {
− f o r ( auto& i n d i v i d u a l : p o p u l a t i o n ) {
− i n d i v i d u a l . metadata . n o r m a l i z e d _ f i t n e s s = in d . . .
+ i f ( p o p u l a t i o n . f r o n t ( ) . metadata . f i t n e s s != 0 . 0 ) {
+ doub l e f i t n e s s _ s u m = s t d : : accumulate ( p o p u l a t i o n . b . .
+ f o r ( auto& i n d i v i d u a l : p o p u l a t i o n ) {
+ i n d i v i d u a l . metadata . n o r m a l i z e d _ f i t n e s s = i nd . . .
+ }

Other places too...
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Merging in Selections

• Get rid of the selection container all together and just do it all
in a single step

• Do the preprocessing
• for(... i = 0; i < kPopulationSize; ++i)

• Pick the two individuals
• Crossover
• Randomly mutuate

• This also seperates out sequential code from obviously parallel
code!
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Adding OpenMP

• Just add the following around the previous loop

• #pragma omp parallel for shared(new_population)

• Make new_population with kPopulationSize default
constructed elements so each thread can update its own index
without a critical section
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Optimize Uniform Selections

• It so happens with the input and these genetic operations, the
population gets homogeneous

• All of the fitness values are equal to 0, therefore there is an
equally likely chance to select them

• Checking for them is easy too! You just see if the largest
element (which is at the front) is 0
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Change 4

i f ( u n i f o r m _ s e l e c t i o n ) {
/∗ Pick the f i r s t i n d i v i d u a l ∗/
f i r s t = p o p u l a t i o n −>beg in ( ) ;
s t d : : advance ( f i r s t ,

rand_r(& seed ) % k P o p u l a t i o n S i z e ) ;

/∗ Pick the second i n d i v i d u a l ∗/
second = p o p u l a t i o n −>beg in ( ) ;
s t d : : advance ( second ,

rand_r(& seed ) % k P o p u l a t i o n S i z e ) ;
}

• Also, change the calls from rand to rand_r and use a
threadprivate seed set to some initial value
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Minor Changes

• Compiler flags add much speedup in this case, but they’re free
and easy

• Use -Ofast and -D_GLIBCXX_PARALLEL (which doesn’t seem
to parallelize the sort, which is what I wanted

• Inline distance, crossover and mutate

• Use an unsigned short instead of an unsigned int for the
index type
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Some Fixes

• cl_float4 won’t let you access x and it was suggested to try
s0, which didn’t work either

• Add -U__STRICT_ANSI__ to CXXFLAGS (already fixed in the
provided tarball)

• The platform may be messed up on ece459-1 since there are
two of them, should be fixed shortly
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Introduction

• You’re computing the forces (or accelerations since m = 1) of
all points in a space

• The forces for points far away are small and are costly to
compute

• We can approximate these other points or disregard them
(depending on how important the speedup/accuracy trade-off
is for you)
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Binning

• Real solutions would probably use a specialized data structure
like and octree but an easier way to do it is to seperate the
points into bins

• In this case our space is 10003, we can use 1000 bins of size
1003

• Compute the centre of mass for each bin, which we can do in
parallel

• You also want to keep track of which points are in which bin
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Computing Forces

• Go over every bin

• Use all of the points in adjacent bins to compute the forces on
each point in the bin

• Use the centres of mass to compute the forces with all other
bins

• Ignore bins greater than a set number of bins away
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Introduction

• So, previously we traded off accuracy for performance, we can
generalize this a bit

• Martin Rinard summarized these types of improvements
[Rinard et al., 2010]:

• Early phase termination [Rinard, 2007]
• Loop perforation [Hoffmann et al., 2009]

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Early Phase Termination

• Recall barriers, we have to wait for every thread to reach the
barrier, even if one is horribly slow

• Well, let’s kill the slowest thread (this may change the
meaning of the program)

• We could develop a statistical model of the program behaviour
and only kill tasks that don’t introduce unacceptable
distortions

• You could output a confidence interval as well
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Loop Perforation

• Same idea to sequential programs, just throw away some data
if it’s not that useful (in a general manner)

f o r ( i = 0 ; i < n ; ++i ) sum += numbers [ i ] ;

changed to

f o r ( i = 0 ; i < n ; i += 2) sum += numbers [ i ] ;
sum ∗= 2 ;

• Given an appropriately distributed set of numbers, you would
get a speedup of 2

• The paper does detail this for video encoding, giving
indistinguishable results

Lecture 29 - Performance Tweaks University of Waterloo



Assignment 3 Assignment 4 Other Approximations

Summary

• A bunch of optimizations you could make to a real problem
like in assignment 3

• Most performance boosts require a combination of knowledge:

• Algorithms
• Data structures
• Hardware
• Domain knowledge

• Approximation algorithms are a good way to get some
speedup if you don’t mind the trade-off
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