
Lecture 29 - Performance Tweaks
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

March 28, 2012

Assignment 3 Assignment 4 Other Approximations

Introduction

• We’ll look into the improvements people made in Assignment
3

• Improvements we could make to Assignment 4

• Some other examples of doing less work

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Baseline Performance

• distance took the majority of the time, followed by
crossover then selection

• The hash table’s at function took a silly amount of time,
followed by find in crossover

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Hashtables vs. Arrays/Vectors

• You shouldn’t assume a hashtable is always fast for every data
type

• There is a lot of overhead to hash an int to another number
then access that number indirectly, in this case a simple 2
dimensional array/vector is much better

• We lose some generality since our indexs can no longer be
more complex things like strings, if needed though, we could
convert between numbered indexes and strings

• This alone should account for about a 2.7x speedup

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Change 1

doub l e GATSP : : d i s t a n c e (c o n s t t o u r _ c o n t a i n e r& t o u r)
{

− auto i = t o u r . beg i n () ;
− doub l e d i s t a n c e = d i s t a n c e s [f i r s t _ i n d e x] [∗ i] ;
− w h i l e (i != t o u r . end ()) {
− auto& d i s t a n c e s _ i = d i s t a n c e s . a t (∗ i) ;
− ++i ;
− i f (i != t o u r . end ()) {
− d i s t a n c e += d i s t a n c e s _ i . a t (∗ i) ;
− }
− e l s e {
− d i s t a n c e += d i s t a n c e s _ i . a t (f i r s t _ i n d e x) ;
− }
+ t o u r _ c o n t a i n e r : : s i z e _ t y p e n = t o u r . s i z e () ;
+ doub l e d i s t a n c e = d i s t a n c e s [f i r s t _ i n d e x] [t o u r [0]] ;
+ f o r (t o u r _ c o n t a i n e r : : s i z e _ t y p e i = 0 ; i < (n −1); ++i) {
+ d i s t a n c e += d i s t a n c e s [t o u r [i]] [t o u r [i + 1]] ;

}
+ d i s t a n c e += d i s t a n c e s [t o u r [n − 1]] [f i r s t _ i n d e x] ;

r e t u r n d i s t a n c e ;
}

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Removing the find

• The find in crossover checks that the element from the
second parent was already added in the child, we can remove
this

• Instead of going and searching the sub-tour each time, make a
lookup array which has true for every index in the sub-tour
and false otherwise

• Replace the find with an access to this array

• This is about a 1.55 speedup over the last change
(overall 4.19x)

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Change 2

+ s t d : : v e c to r <bool> lookup (a . t o u r . s i z e () , f a l s e) ;
+ f o r (auto i = ch i l d_copy_beg in ; i < ch i ld_copy_end ;

++i) {
+ lookup [∗ i] = t r u e ;
+ }
+

auto i = c h i l d . t o u r . beg i n () ;
f o r (auto& i n d e x : b . t o u r) {

/∗ Search to s e e i f t h i s i n d e x i s a l r e a d y i n c l u d e d
as p a r t o f the copy (from a) ∗/

− auto r e s u l t = s t d : : f i n d (ch i ld_copy_beg in ,
ch i ld_copy_end , i n d e x) ;

− i f (r e s u l t == (c h i l d . t o u r . beg i n () + o f f s e t _ e n d)) {
+ i f (lookup [i n d e x] == f a l s e) {

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Reordering the sort

• At the beginning of iteration the population already has
valid distance values, it could also be sorted at this point

• Replace all of the min_element or max_element with
population.back() or population.front()

• We can also replace checking if the fitness sum is going to be
zero, by checking if the largest element is zero

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Change 3

/∗ Find the maximum d i s t a n c e , a t t h i s p o i n t the
metadata f o r each i n d i v i d u a l s h o u l d be i t s
d i s t a n c e ∗/

− doub l e d istance_max = s t d : : max_element (p o p u l a t i o n . beg . .
+ doub l e d istance_max = p o p u l a t i o n . back () . metadata . d i s . . .

/∗ Norma l i ze the f i t n e s s v a l u e s ∗/
− doub l e f i t n e s s _ s u m = s t d : : accumulate (p o p u l a t i o n . beg . . .
− i f (f i t n e s s _ s u m != 0 . 0) {
− f o r (auto& i n d i v i d u a l : p o p u l a t i o n) {
− i n d i v i d u a l . metadata . n o r m a l i z e d _ f i t n e s s = in d . . .
+ i f (p o p u l a t i o n . f r o n t () . metadata . f i t n e s s != 0 . 0) {
+ doub l e f i t n e s s _ s u m = s t d : : accumulate (p o p u l a t i o n . b . .
+ f o r (auto& i n d i v i d u a l : p o p u l a t i o n) {
+ i n d i v i d u a l . metadata . n o r m a l i z e d _ f i t n e s s = i nd . . .
+ }

Other places too...

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Merging in Selections

• Get rid of the selection container all together and just do it all
in a single step

• Do the preprocessing
• for(... i = 0; i < kPopulationSize; ++i)

• Pick the two individuals
• Crossover
• Randomly mutuate

• This also seperates out sequential code from obviously parallel
code!

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Adding OpenMP

• Just add the following around the previous loop

• #pragma omp parallel for shared(new_population)

• Make new_population with kPopulationSize default
constructed elements so each thread can update its own index
without a critical section

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Optimize Uniform Selections

• It so happens with the input and these genetic operations, the
population gets homogeneous

• All of the fitness values are equal to 0, therefore there is an
equally likely chance to select them

• Checking for them is easy too! You just see if the largest
element (which is at the front) is 0

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Change 4

i f (u n i f o r m _ s e l e c t i o n) {
/∗ Pick the f i r s t i n d i v i d u a l ∗/
f i r s t = p o p u l a t i o n −>beg in () ;
s t d : : advance (f i r s t ,

rand_r(& seed) % k P o p u l a t i o n S i z e) ;

/∗ Pick the second i n d i v i d u a l ∗/
second = p o p u l a t i o n −>beg in () ;
s t d : : advance (second ,

rand_r(& seed) % k P o p u l a t i o n S i z e) ;
}

• Also, change the calls from rand to rand_r and use a
threadprivate seed set to some initial value

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Minor Changes

• Compiler flags add much speedup in this case, but they’re free
and easy

• Use -Ofast and -D_GLIBCXX_PARALLEL (which doesn’t seem
to parallelize the sort, which is what I wanted

• Inline distance, crossover and mutate

• Use an unsigned short instead of an unsigned int for the
index type

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Some Fixes

• cl_float4 won’t let you access x and it was suggested to try
s0, which didn’t work either

• Add -U__STRICT_ANSI__ to CXXFLAGS (already fixed in the
provided tarball)

• The platform may be messed up on ece459-1 since there are
two of them, should be fixed shortly

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Introduction

• You’re computing the forces (or accelerations since m = 1) of
all points in a space

• The forces for points far away are small and are costly to
compute

• We can approximate these other points or disregard them
(depending on how important the speedup/accuracy trade-off
is for you)

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Binning

• Real solutions would probably use a specialized data structure
like and octree but an easier way to do it is to seperate the
points into bins

• In this case our space is 10003, we can use 1000 bins of size
1003

• Compute the centre of mass for each bin, which we can do in
parallel

• You also want to keep track of which points are in which bin

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Computing Forces

• Go over every bin

• Use all of the points in adjacent bins to compute the forces on
each point in the bin

• Use the centres of mass to compute the forces with all other
bins

• Ignore bins greater than a set number of bins away

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Introduction

• So, previously we traded off accuracy for performance, we can
generalize this a bit

• Martin Rinard summarized these types of improvements
[Rinard et al., 2010]:

• Early phase termination [Rinard, 2007]
• Loop perforation [Hoffmann et al., 2009]

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Early Phase Termination

• Recall barriers, we have to wait for every thread to reach the
barrier, even if one is horribly slow

• Well, let’s kill the slowest thread (this may change the
meaning of the program)

• We could develop a statistical model of the program behaviour
and only kill tasks that don’t introduce unacceptable
distortions

• You could output a confidence interval as well

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Loop Perforation

• Same idea to sequential programs, just throw away some data
if it’s not that useful (in a general manner)

f o r (i = 0 ; i < n ; ++i) sum += numbers [i] ;

changed to

f o r (i = 0 ; i < n ; i += 2) sum += numbers [i] ;
sum ∗= 2 ;

• Given an appropriately distributed set of numbers, you would
get a speedup of 2

• The paper does detail this for video encoding, giving
indistinguishable results

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

Summary

• A bunch of optimizations you could make to a real problem
like in assignment 3

• Most performance boosts require a combination of knowledge:

• Algorithms
• Data structures
• Hardware
• Domain knowledge

• Approximation algorithms are a good way to get some
speedup if you don’t mind the trade-off

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

References I

Hoffmann, H., Misailovic, S., Sidiroglou, S., Agarwal, A., and
Rinard, M. (2009).
Using code perforation to improve performance, reduce energy
consumption, and respond to failures.
Technical Report MIT-CSAIL-TR-2009-042, MIT CSAIL,
Cambridge, MA.
Rinard, M. (2007).
Using early phase termination to eliminate load imbalances at
barrier synchronization points.
In Proceedings of OOPSLA 2007, pages 369–386, Montreal,
Quebec, Canada.

Lecture 29 - Performance Tweaks University of Waterloo

Assignment 3 Assignment 4 Other Approximations

References II

Rinard, M., Hoffmann, H., Misailovic, S., and Sidiroglou, S.
(2010).
Patterns and statistical analysis for understanding reduced
resource computing.
In Proceedings of Onward! 2010, pages 806–821,
Reno/Tahoe, NV, USA. ACM.

Lecture 29 - Performance Tweaks University of Waterloo

	Assignment 3
	Assignment 4
	Other Approximations

